Jacalin, an alpha-O-glycoside of the disaccharide Thomsen-Friedenreich antigen (galactose beta1-3 N-acetylgalactosamine, T-antigen)-specific lectin from jackfruit seeds, has been shown to induce mitogenic responses and to block infection by HIV-1 in CD4+ T lymphocytes. The molecular mechanism underlying Jacalin-induced T cell activation has not been elucidated completely yet. In the present study, protein tyrosine phosphatase (PTPase) CD45 was isolated from a Jurkat T cell membrane fraction as a major receptor for Jacalin through affinity chromatography and mass spectrometry. CD45, which is highly glycosylated and expressed exclusively on the surface of lymphocytes, is a key regulator of lymphocyte signaling, playing a pivotal role in activation and development. We found that the lectin induced significant IL-2 production by a CD45-positive Jurkat T cell line (JE6.1) and primary T cells. However, this effect did not occur in a CD45-negative Jurkat T cell line (J45.01) and was blocked completely by a specific CD45 PTPase inhibitor in Jurkat T (JE6.1) and primary T cells. Furthermore, we also observed that Jacalin caused a marked increase in IL-2 secretion in response to TCR ligation and CD28 costimulation and contributed to Th1/Th2 cytokine production by activating CD45. Jacalin increased CD45 tyrosine phosphatase activity, which resulted in activation of the ERK1/2 and p38 MAPK cascades. Based on these findings, we propose a new, immunoregulatory model for Jacalin, wherein glycosylation-dependent interactions of Jacalin with CD45 on T cells elevate TCR-mediated signaling, which thereby up-regulate T cell activation thresholds and Th1/Th2 cytokine secretion.
Cell detachment is essential in culturing adherent cells. Trypsinization is the most popular detachment technique, even though it reduces viability due to the damage to the membrane and extracellular matrix. Avoiding such damage would improve cell culture efficiency. Here we propose an enzyme-free cell detachment method that employs the acoustic pressure, sloshing in serum-free medium from intermittent traveling wave. This method detaches 96.2% of the cells, and increases its transfer yield to 130% of conventional methods for 48 h, compared to the number of cells detached by trypsinization. We show the elimination of trypsinization reduces cell damage, improving the survival of the detached cells. Acoustic pressure applied to the cells and media sloshing from the intermittent traveling wave were identified as the most important factors leading to cell detachment. This proposed method will improve biopharmaceutical production by expediting the amplification of tissue-cultured cells through a more efficient transfer process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.