Adrenergic agonists have different modulatory effects on excitatory synaptic transmission depending on the receptor subtypes involved. The present study examined the loci of alpha(1)- and beta-adrenoceptor agonists, which have opposite effects on excitatory neural transmission, involved in modulation of glutamatergic transmission in layer V pyramidal cells of rat cerebral cortex. Phenylephrine, an alpha(1)-adrenoceptor agonist, suppressed the amplitude of AMPA receptor-mediated excitatory postsynaptic currents evoked by repetitive electrical stimulation (eEPSCs, 10 pulses at 33 Hz). The coefficient of variation (CV) of the 1st eEPSC amplitude and paired-pulse ratio (PPR), which were sensitive to extracellular Ca(2+) concentration, were not affected by phenylephrine. Phenylephrine suppressed miniature EPSC (mEPSC) amplitude without changing its frequency. In contrast, isoproterenol, a beta-adrenoceptor agonist, strongly increased the amplitude of the 1st eEPSC compared with that of the 2nd to 10th eEPSCs, which resulted in a decrease in PPR. Isoproterenol-induced enhancement of eEPSC amplitude was accompanied by a decrease in CV. Isoproterenol increased the frequency of mEPSCs without significant effect on amplitude. Phenylephrine suppressed inward currents evoked by puff application of glutamate, AMPA, or NMDA, whereas isoproterenol application was not accompanied by significant changes in these inward currents. These findings suggest that phenylephrine decreases eEPSCs through postsynaptic AMPA or NMDA receptors, while the effects of isoproterenol are mediated by facilitation of glutamate release from presynaptic terminals without effect on postsynaptic glutamate receptors. These two different mechanisms of modulation of excitatory synaptic transmission may improve the "signal-to-noise ratio" in cerebral cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.