Activin, a member of the TGF-β superfamily, regulates cell growth and differentiation in various cell types. Activin A acts as a negative regulator of renal development as well as tubular regeneration after renal injury. However, it remains unknown whether activin A is involved in renal fibrosis. To clarify this issue, we utilized a rat model of unilateral ureteral obstruction (UUO). The expression of activin A was significantly increased in the UUO kidneys compared to that in contralateral kidneys. Activin A was detected in glomerular mesangial cells and interstitial fibroblasts in normal kidneys. In UUO kidneys, activin A was abundantly expressed by interstitial α-SMA-positive myofibroblasts. Administration of recombinant follistatin, an activin antagonist, reduced the fibrotic area in the UUO kidneys. The number of proliferating cells in the interstitium, but not in the tubules, was significantly lower in the follistatin-treated kidneys. Expression of α-SMA, deposition of type I collagen and fibronectin, and CD68-positive macrophage infiltration were significantly suppressed in the follistatin-treated kidneys. These data suggest that activin A produced by interstitial fibroblasts acts as a potent profibrotic factor during renal fibrosis. Blockade of activin A action may be a novel approach for the prevention of renal fibrosis progression.
Acute kidney injury (AKI) is a common but complex condition that is associated with increased morbidity and mortality. In the present study, we examined whether urinary activin A, a member of the TGF-beta superfamily, is present in mice with ischemia-reperfusion injury and in humans with AKI, as well as its potential as a biomarker for AKI. Expression of activin A was markedly increased in ischemic mouse kidneys. In situ hybridization demonstrated that activin mRNA was expressed in tubular cells of ischemic kidneys but not of normal kidneys. Immunoreactive activin A, which was absent in normal kidneys, was detected in the cytoplasm of proximal tubular cells in ischemic kidneys. Activin A was undetectable in the urine of normal mice. In contrast, activin A was significantly increased in the urine of ischemic mice at 3 h after reperfusion. Urinary activin A levels increased according to the period of ischemia. In humans, urinary activin A was almost undetectable in healthy volunteers and in patients with pre-renal AKI, but was significantly increased in patients with renal AKI. There was no significant correlation between urinary activin A and serum activin A. Collectively, urinary activin A might be a useful biomarker reflecting the severity of AKI.
The kidney has the capacity for regeneration and repair after a variety of insults. Over the past few decades, factors that promote repair of the injured kidney have been extensively investigated. By using kidney injury animal models, the role of intrinsic and extrinsic growth factors, transcription factors, and extracellular matrix in this process has been examined. The identification of renal stem cells in the adult kidney as well as in the embryonic kidney is an active area of research. Cell populations expressing putative stem cell markers or possessing stem cell properties have been found in the tubules, interstitium, and glomeruli of the normal kidney. Cell therapies with bone marrow-derived hematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells, and amniotic fluid-derived stem cells have been highly effective for the treatment of acute or chronic renal failure in animals. Embryonic stem cells and induced pluripotent stem cells are also utilized for the construction of artificial kidneys or renal components. In this review, we highlight the advances in regenerative medicine for the kidney from the perspective of renotropic factors, renal stem/progenitor cells, and stem cell therapies and discuss the issues to be solved to realize regenerative therapy for kidney diseases in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.