We found that the autophagic machinery could effectively eliminate pathogenic group A Streptococcus (GAS) within nonphagocytic cells. After escaping from endosomes into the cytoplasm, GAS became enveloped by autophagosome-like compartments and were killed upon fusion of these compartments with lysosomes. In autophagy-deficient Atg5-/- cells, GAS survived, multiplied, and were released from the cells. Thus, the autophagic machinery can act as an innate defense system against invading pathogens.
The hypothalamic paraventricular nucleus (PVN) functions as a center to integrate various neuronal activities for regulating feeding behavior. Nesfatin-1, a recently discovered anorectic molecule, is localized in the PVN. However, the anorectic neural pathway of nesfatin-1 remains unknown. Here we show that central injection of nesfatin-1 activates the PVN and brain stem nucleus tractus solitarius (NTS). In the PVN, nesfatin-1 targets both magnocellular and parvocellular oxytocin neurons and nesfatin-1 neurons themselves and stimulates oxytocin release. Immunoelectron micrographs reveal nesfatin-1 specifically in the secretory vesicles of PVN neurons, and immunoneutralization against endogenous nesfatin-1 suppresses oxytocin release in the PVN, suggesting paracrine/autocrine actions of nesfatin-1. Nesfatin-1-induced anorexia is abolished by an oxytocin receptor antagonist. Moreover, oxytocin terminals are closely associated with and oxytocin activates pro-opiomelanocortin neurons in the NTS. Oxytocin induces melanocortin-dependent anorexia in leptin-resistant Zucker-fatty rats. The present results reveal the nesfatin-1-operative oxytocinergic signaling in the PVN that triggers leptin-independent melanocortin-mediated anorexia.
The gastric hormone ghrelin and its receptor, growth hormone secretagogue receptor (GHSR), are expressed in pancreas. Here, we report that ghrelin is released from pancreatic islets to regulate glucose-induced insulin release. Plasma concentrations of ghrelin, as well as insulin, were higher in pancreatic veins than in arteries. GHSR antagonist and immunoneutralization of endogenous ghrelin enhanced glucose-induced insulin release from perfused pancreas, whereas exogenous ghrelin suppressed it. GHSR antagonist increased plasma insulin levels in gastrectomized and normal rats to a similar extent. Ghrelin knockout mice displayed enhanced glucose-induced insulin release from isolated islets, whereas islet density, size, insulin content, and insulin mRNA levels were unaltered. Glucose tolerance tests (GTTs) in ghrelin knockout mice showed increased insulin and decreased glucose responses. Treatment with high-fat diet produced glucose intolerance in GTTs in wild-type mice. In ghrelin knockout mice, the high-fat diet-induced glucose intolerance was largely prevented, whereas insulin responses to GTTs were markedly enhanced. These findings demonstrate that ghrelin originating from pancreatic islets is a physiological regulator of glucose-induced insulin release. Antagonism of the ghrelin function can enhance insulin release to meet increased demand for insulin in high-fat diet-induced obesity and thereby normalize glycemic control, which may provide a potential therapeutic application to counteract the progression of type 2 diabetes. Diabetes 55: 3486 -3493, 2006
Nesfatin-1 is a novel satiety molecule in the hypothalamus and is also present in peripheral tissues. Here we sought to identify the active segment of nesfatin-1 and to determine the mechanisms of its action after peripheral administration in mice. Intraperitoneal injection of nesfatin-1 suppressed food intake in a dose-dependent manner. Nesfatin-1 has three distinct segments; we tested the effect of each segment on food intake. Injection of the midsegment decreased food intake under leptin-resistant conditions such as db/db mice and mice fed a high-fat diet. After injection of the midsegment, expression of c-Fos was significantly activated in the brainstem nucleus tractus solitarius (NTS) but not in the hypothalamic arcuate nucleus; the nicotinic cholinergic pathway to the NTS contributed to midsegment-induced anorexia. Midsegment injection significantly increased expression of proopiomelanocortin and cocaine- and amphetamine-regulated transcript genes in the NTS but not in the arcuate nucleus. Investigation of mutant midsegments demonstrated that a region with amino acid sequence similarity to the active site of agouti-related peptide was indispensable for anorexigenic induction. Our findings indicate that the midsegment of nesfatin-1 causes anorexia, possibly by activating POMC and CART neurons in the NTS via a leptin-independent mechanism after peripheral stimulation.
The ground-state fermion second-order reduced density matrix ͑2-RDM͒ is determined variationally using itself as a basic variable. As necessary conditions of the N-representability, we used the positive semidefiniteness conditions, P, Q, and G conditions that are described in terms of the 2-RDM. The variational calculations are performed by using recently developed semidefinite programming algorithm ͑SDPA͒. The calculated energies of various closed-and open-shell atoms and molecules are excellent, overshooting only slightly the full-CI energies. There was no case where convergence was not achieved. The calculated properties also reproduce well the full-CI results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.