The functional disorders caused by central nervous system (CNS) diseases, such as ischemic stroke, are clinically incurable and current treatments have limited effects. Previous studies suggested that cell-based therapy using mesenchymal stem cells (MSCs) exerts therapeutic effects for ischemic stroke. In addition, the characteristics of MSCs may depend on their sources. Among the derived tissues of MSCs, we have focused on cranial bones originating from the neural crest. We previously demonstrated that the neurogenic potential of human cranial bone-derived MSCs (cMSCs) was higher than that of human iliac bone-derived MSCs. Therefore, we presumed that cMSCs have a higher therapeutic potential for CNS diseases. However, the therapeutic effects of cMSCs have not yet been elucidated in detail. In the present study, we aimed to demonstrate the therapeutic effects of transplantation with rat cranial bone-derived MSCs (rcMSCs) in ischemic stroke model rats. The mRNA expression of brain-derived neurotrophic factor and nerve growth factor was significantly stronger in rcMSCs than in rat bone marrow-derived MSCs (rbMSCs). Ischemic stroke model rats in the rcMSC transplantation group showed better functional recovery than those in the no transplantation and rbMSC transplantation groups. Furthermore, in the in vitro study, the conditioned medium of rcMSCs significantly suppressed the death of neuroblastoma × glioma hybrid cells (NG108-15) exposed to oxidative and inflammatory stresses. These results suggest that cMSCs have potential as a candidate cell-based therapy for CNS diseases.
We analyzed the cell characteristics, neuroprotective, and transplantation effects of human cranial bonederived mesenchymal stem cells (hcMSCs) in ischemic stroke model rats compared with human iliac bone-derived mesenchymal stem cells (hiMSCs). The expressions of brain-derived neurotrophic factor (BDNF ) and vascular endothelial growth factor (VEGF ) as neurotrophic factors were analyzed in both MSCs. hiMSCs or hcMSCs were intravenously administered into ischemic stroke model rats at 3 or 24 h after middle cerebral artery occlusion (MCAO) and neurological function was evaluated. The survival rate of neuroblastoma × glioma hybrid cells (NG108-15) after 3 or 24 h oxidative or inflammatory stress and the neuroprotective effects of hiMSCs or hcMSCs-conditioned medium (CM) on 3 or 24 h oxidative or inflammatory stress-exposed NG108-15 cells were analyzed. The expressions of BDNF and VEGF were higher in hcMSCs than in hiMSCs. hcMSCs transplantation at 3 h after MCAO resulted in significant functional recovery compared with that in the hiMSCs or control group. The survival rate of stress-exposed NG108-15 was lower after 24 h stress than after 3 h stress. The survival rates of NG108-15 cells cultured with hcMSCs-CM after 3 h oxidative or inflammatory stress were significantly higher than in the control group. Our results suggest that hcMSCs transplantation in the early stage of ischemic stroke suppresses the damage of residual nerve cells and leads to functional recovery through the strong expressions of neurotrophic factors. This is the first report demonstrating a functional recovery effect after ischemic stroke following hcMSCs transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.