Urban albedo change as a function of urban geometrical structure has been examined by using a two-dimensional urban block-canyon array model. The complex multiple reflections of incident photons in the urban canyon are simulated by using a Monte-Carlo method. The photons are tracked until they leave the canyon or are completely absorbed. In the model, the direct and diffuse components of incident solar radiation are introduced and the specular and isotropic reflection characteristics are considered for the relevant urban surfaces. The result shows that the urban albedo decreases as the urban irregularity increases as indicated by the model experiment of Aida (1982). The dependence of albedo on the incident solar zenith angle observed in the experiment is also confirmed for various urban models.As an application, some actual urban structures in the Marunouchi area in Tokyo are examined. Urban planning for absorption and reflection of solar radiation in urban areas is also discussed based on the analysis of the change in albedo with canyon dimensions and solar zenith angle.
The size and variation of the urban increase of atmospheric downward radiation have been observed in the Tokyo area. Downward radiation flux, air temperature and humidity were observed by automobile traverses along the expressways across the greater Tokyo area from the Kanagawa (southwest) to the Chiba (east) sides. The observations were carried out on clear and rather calm nights in the winters of 1975-1978. The results show that Tokyo receives increased downward radiation in comparison with the amount received in the surrounding rural areas. The area of increased downward flux extends about 40 km at its widest along the observation route when the winds are weak, and the rural-urban increase of downward radiation becomes about 8% on the Kanagawa side and about 10% on the Chiba side. The area of increased downward flux is close to that of the urban heat island, where an urban decrease of water vapour content is also observed.The present analysis shows that the large urban increase of radiation flux is due to the difference between the vertical temperature profiles over the urban and rural regions. The development of a surface temperature inversion over the rural area and the urban decrease in water vapour content provide a rather smaller rural-urban difference in downward radiation compared with the development of a heat island.
The solar radiation reflected by an array of finite broken clouds corresponding to cumuli is examined. The importance of the distribution of cloud size is demonstrated by using the actual cloud pattern over Florida. The accuracy of simplified cloud models (plane-parallel infinite cloud or an array of identical clouds) to approximate the array of clouds with size distribution is examined. The result shows the following: (1) The model of plane-parallel infinite cloud causes fairly large error in the reflection. (2) The model of the array of identical clouds is still insufficient to approximate the array of distributed clouds. (3) When the sun is high, the difference between the models of cloud array becomes most evident and an accurate model for broken clouds is required. (4) The result of (3) is maintained even if the reflection from the clouds-earth surface system is considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.