This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.
WNTsignals are transduced to the canonical pathway for cell fate determination, and to the noncanonical pathway for control of cell movement and tissue polarity. Canonical WNT signals are transduced through Frizzled family receptors and LRP5/LRP6 coreceptor to the h-catenin signaling cascade. Microtubule affinity^regulating kinase (PAR-1) family kinases, casein kinase Iq (CKIq), and FRAT are positive regulators of the canonical WNT pathway, whereas APC, AXIN1, AXIN2, CKIa, NKD1, NKD2, hTRCP1, hTRCP2, ANKRD6, Nemo-like kinase (NLK), and peroxisome proliferator^activated receptor g (PPARg) are negative regulators. Nuclear complex, consisting of T-cell factor/lymphoid enhancer factor, h-catenin, BCL9/BCL9L, and PYGO, activates transcription of canonical WNT target genes such as FGF20, DKK1, WISP1, MYC, CCND1, and Glucagon (GCG). Noncanonical WNT signals are transduced through Frizzled family receptors and ROR2/RYK coreceptors to the Dishevelled-dependent (Rho family GTPases and c-jun NH 2 -terminal kinase) or the Ca 2+ -dependent (NLK and nuclear factor of activated T cells) signaling cascades. WNT signals are context-dependently transduced to both pathways based on the expression profile of WNT, SFRP, WIF, DKK, Frizzled receptors, coreceptors, and the activity of intracellular WNT signaling regulators. Epigenetic silencing and loss-of-function mutation of negative regulators of the canonical WNT pathway occur in a variety of human cancer. WNT, fibroblast growth factor (FGF), Notch, Hedgehog, and transforming growth factor h/bone morphogenetic protein signaling network are implicated in the maintenance of tissue homeostasis by regulating self-renewal of normal stem cells as well as proliferation or differentiation of progenitor (transit-amplifying) cells. Breakage of the stem cell signaling network leads to carcinogenesis. Nonsteroidal anti-inflammatory drugs and PPARg agonists with the potential to inhibit the canonical WNT signaling pathway are candidate agents for chemoprevention. ZTM000990 and PKF118-310 are lead compounds targeted to the canonical WNT signaling cascade. Anti-WNT1and anti-WNT2 monoclonal antibodies show in vitro effects in cancer treatment. After the optimization, derivatives of small-molecule compound and human monoclonal antibody targeted to the WNTsignaling pathway could be used in cancer medicine.
Hedgehog signaling is aberrantly activated in glioma, medulloblastoma, basal cell carcinoma, lung cancer, esophageal cancer, gastric cancer, pancreatic cancer, breast cancer, and other tumors. Hedgehog signals activate GLI family members via Smoothened. RTK signaling potentiates GLI activity through PI3K-AKT-mediated GSK3 inactivation or RAS-STIL1-mediated SUFU inactivation, while GPCR signaling to Gs represses GLI activity through adenylate cyclase-mediated PKA activation. GLI activators bind to GACCACCCA motif to regulate transcription of GLI1, PTCH1, PTCH2, HHIP1, MYCN, CCND1, CCND2, BCL2, CFLAR, FOXF1, FOXL1, PRDM1 (BLIMP1), JAG2, GREM1, and Follistatin. Hedgehog signals are fine-tuned based on positive feedback loop via GLI1 and negative feedback loop via PTCH1, PTCH2, and HHIP1. Excessive positive feedback or collapsed negative feedback of Hedgehog signaling due to epigenetic or genetic alterations leads to carcinogenesis. Hedgehog signals induce cellular proliferation through upregulation of N-Myc, Cyclin D/E, and FOXM1. Hedgehog signals directly upregulate JAG2, indirectly upregulate mesenchymal BMP4 via FOXF1 or FOXL1, and also upregulate WNT2B and WNT5A. Hedgehog signals induce stem cell markers BMI1, LGR5, CD44 and CD133 based on cross-talk with WNT and/or other signals. Hedgehog signals upregulate BCL2 and CFLAR to promote cellular survival, SNAI1 (Snail), SNAI2 (Slug), ZEB1, ZEB2 (SIP1), TWIST2, and FOXC2 to promote epithelial-to-mesenchymal transition, and PTHLH (PTHrP) to promote osteolytic bone metastasis. KAAD-cyclopamine, Mu-SSKYQ-cyclopamine, IPI-269609, SANT1, SANT2, CUR61414 and HhAntag are small-molecule inhibitors targeted to Smoothened, GANT58, GANT61 to GLI1 and GLI2, and Robot-nikinin to SHH. Hedgehog signaling inhibitors should be used in combination with RTK inhibitors, GPCR modulators, and/or irradiation for cancer therapy.
Fibroblast growth factors (FGFs) are involved in a variety of cellular processes, such as stemness, proliferation, anti-apoptosis, drug resistance, and angiogenesis. Here, FGF signaling network, cancer genetics/genomics of FGF receptors (FGFRs), and FGFR-targeted therapeutics will be reviewed. FGF signaling to RAS-MAPK branch and canonical WNT signaling cascade mutually regulate transcription programming. FGF signaling to PI3K-AKT branch and Hedgehog, Notch, TGFβ, and noncanonical WNT signaling cascades regulate epithelial-to-mesenchymal transition (EMT) and invasion. Gene amplification of FGFR1 occurs in lung cancer and estrogen receptor (ER)-positive breast cancer, and that of FGFR2 in diffuse-type gastric cancer and triple-negative breast cancer. Chromosomal translocation of FGFR1 occurs in the 8p11 myeloproliferative syndrome and alveolar rhabdomyosarcoma, as with FGFR3 in multiple myeloma and peripheral T-cell lymphoma. FGFR1 and FGFR3 genes are fused to neighboring TACC1 and TACC3 genes, respectively, due to interstitial deletions in glioblastoma multiforme. Missense mutations of FGFR2 are found in endometrial uterine cancer and melanoma, and similar FGFR3 mutations in invasive bladder tumors, and FGFR4 mutations in rhabdomyosarcoma. Dovitinib, Ki23057, ponatinib, and AZD4547 are orally bioavailable FGFR inhibitors, which have demonstrated striking effects in preclinical model experiments. Dovitinib, ponatinib, and AZD4547 are currently in clinical trial as anticancer drugs. Because there are multiple mechanisms of actions for FGFR inhibitors to overcome drug resistance, FGFR-targeted therapy is a promising strategy for the treatment of refractory cancer. Whole exome/transcriptome sequencing will be introduced to the clinical laboratory as the companion diagnostic platform facilitating patient selection for FGFR-targeted therapeutics in the era of personalized medicine.
Cancer stem cells (CSCs), which have the potential for self-renewal, differentiation and de-differentiation, undergo epigenetic, epithelial-mesenchymal, immunological and metabolic reprogramming to adapt to the tumor microenvironment and survive host defense or therapeutic insults. Intra-tumor heterogeneity and cancer-cell plasticity give rise to therapeutic resistance and recurrence through clonal replacement and reactivation of dormant CSCs, respectively. WNT signaling cascades cross-talk with the FGF, Notch, Hedgehog and TGFβ/BMP signaling cascades and regulate expression of functional CSC markers, such as CD44, CD133 (PROM1), EPCAM and LGR5 (GPR49). Aberrant canonical and non-canonical WNT signaling in human malignancies, including breast, colorectal, gastric, lung, ovary, pancreatic, prostate and uterine cancers, leukemia and melanoma, are involved in CSC survival, bulk-tumor expansion and invasion/metastasis. WNT signaling-targeted therapeutics, such as anti-FZD1/2/5/7/8 monoclonal antibody (mAb) (vantictumab), anti-LGR5 antibody-drug conjugate (ADC) (mAb-mc-vc-PAB-MMAE), anti-PTK7 ADC (PF-06647020), anti-ROR1 mAb (cirmtuzumab), anti-RSPO3 mAb (rosmantuzumab), small-molecule porcupine inhibitors (ETC-159, WNT-C59 and WNT974), tankyrase inhibitors (AZ1366, G007-LK, NVP-TNKS656 and XAV939) and β-catenin inhibitors (BC2059, CWP232228, ICG-001 and PRI-724), are in clinical trials or preclinical studies for the treatment of patients with WNT-driven cancers. WNT signaling-targeted therapeutics are applicable for combination therapy with BCR-ABL, EGFR, FLT3, KIT or RET inhibitors to treat a subset of tyrosine kinase-driven cancers because WNT and tyrosine kinase signaling cascades converge to β-catenin for the maintenance and expansion of CSCs. WNT signaling-targeted therapeutics might also be applicable for combination therapy with immune checkpoint blockers, such as atezolizumab, avelumab, durvalumab, ipilimumab, nivolumab and pembrolizumab, to treat cancers with immune evasion, although the context-dependent effects of WNT signaling on immunity should be carefully assessed. Omics monitoring, such as genome sequencing and transcriptome tests, immunohistochemical analyses on PD-L1 (CD274), PD-1 (PDCD1), ROR1 and nuclear β-catenin and organoid-based drug screening, is necessary to determine the appropriate WNT signaling-targeted therapeutics for cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.