IgG4-related disease (IgG4RD) is a novel clinical disease entity characterized by elevated serum IgG4 concentration and tumefaction or tissue infiltration by IgG4-positive plasma cells. IgG4RD may be present in a certain proportion of patients with a wide variety of diseases, including Mikulicz’s disease, autoimmune pancreatitis, hypophysitis, Riedel thyroiditis, interstitial pneumonitis, interstitial nephritis, prostatitis, lymphadenopathy, retroperitoneal fibrosis, inflammatory aortic aneurysm, and inflammatory pseudotumor. Although IgG4RD forms a distinct, clinically independent disease category and is attracting strong attention as a new clinical entity, many questions and problems still remain to be elucidated, including its pathogenesis, the establishment of diagnostic criteria, and the role of IgG4. Here we describe the concept of IgG4RD and up-to-date information on this emerging disease entity.
TAFRO syndrome is a systemic inflammatory disorder characterized by thrombocytopenia, anasarca including pleural effusion and ascites, fever, renal insufficiency, and organomegaly including hepatosplenomegaly and lymphadenopathy. Its onset may be acute or sub-acute, but its etiology is undetermined. Although several clinical and pathological characteristics of TAFRO syndrome resemble those of multicentric Castleman disease (MCD), other specific features can differentiate between them. Some TAFRO syndrome patients have been successfully treated with glucocorticoids and/or immunosuppressants, including cyclosporin A, tocilizumab and rituximab, whereas others are refractory to treatment, and eventually succumb to the disease. Early and reliable diagnoses and early treatments with appropriate agents are essential to enhancing patient survival. The present article reports the 2015 updated diagnostic criteria, disease severity classification and treatment strategy for TAFRO syndrome, as formulated by Japanese research teams. These criteria and classification have been applied and retrospectively validated on clinicopathologic data of 28 patients with this and similar conditions (e.g. MCD with serositis and thrombocytopenia).
The Arabidopsis pseudo-response regulator, APRR1, has a unique structural design containing a pseudo-receiver domain and a C-terminal CONSTANS motif. This protein was originally characterized as a presumed component of the His-to-Asp phosphorelay systems in Arabidopsis thaliana. Recently, it was reported that APRR1 is identical to the TOC1 gene product, a mutational lesion of which affects the periods of many circadian rhythms in Arabidopsis plants. TOC1 is believed to be a component of the presumed circadian clock (or central oscillator). Based on these facts, in this study four more genes, each encoding a member of the APRR1/TOC1 family of pseudo-response regulators were identified and characterized with special reference to circadian rhythms. It was found that all these members of the APRR1/TOC1 family (APRR1, APRR3, APRR5, APRR7, and APRR9) are subjected to a circadian rhythm at the level of transcription. Furthermore, in a given 24 h period, the APRR-mRNAs started accumulating sequentially after dawn with 2-3 h intervals in the order of APRR9-->APRR7-->APRR5-->APRR3-->APRR1. These sequential events of transcription, termed 'circadian waves of APRR1/TOCI', were not significantly affected by the photoperiod conditions, if any (e.g. both long and short days), and the expression of APRR9 was first boosted always after dawn. Among these APRRs, in fact, only the expression of APRR9 was rapidly and transiently induced also by white light, whereas such light responses of others were very dull, if any. These results collectively support the view that these members of the APRR1/TOC1 family are together all involved in an as yet unknown mechanism underlying the Arabidopsis circadian clock. Here we propose that the circadian waves of the APRR1/TOC1 family members are most likely a molecular basis of such a biological clock in higher plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.