Herein, we report a convenient and broadly applicable strategy for the difluoromethylation of aryl bromides by metallaphotoredox catalysis. Bromodifluoromethane, a simple and commercially available alkyl halide, is harnessed as an effective source of difluoromethyl radical by silyl-radical-mediated halogen abstraction. The merger of this fluoroalkyl electrophile activation pathway with a dual nickel/photoredox catalytic platform enables the difluoromethylation of a diverse array of aryl and heteroaryl bromides under mild conditions. The utility of this procedure is showcased in the late-stage functionalization of several drug analogues.
Azo-crown ether-based photoswitching chiral phase transfer catalysts have been developed to control the catalytic activity by photoirradiation. Azobenzene binaphthyl crown ether (ABCE) can switch its reactivity and selectivity through structural transformation of the crown ether moiety induced by E/Z photoisomerization of azobenzene. (Z)-ABCE promoted enantioselective alkylation of the glycine Schiff base to afford chiral amino acid derivatives in good yields with high enantiomer ratios. In contrast, (E)-ABCE hindered the reaction progress under the same conditions.
An azopyridine-based oxazoline was developed for utilizing azo group coordination and isomerization as a photoswitchable ligand. The ligand coordinated to rare-earth metal (RE) catalyst underwent efficient E/Z photoisomerization, suggesting tri-...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.