ObjectiveEarly detection and early treatment are of vital importance to the successful treatment of various cancers. The development of a novel screening method that is as economical and non-invasive as the faecal occult blood test (FOBT) for early detection of colorectal cancer (CRC) is needed. A study was undertaken using canine scent detection to determine whether odour material can become an effective tool in CRC screening.DesignExhaled breath and watery stool samples were obtained from patients with CRC and from healthy controls prior to colonoscopy. Each test group consisted of one sample from a patient with CRC and four control samples from volunteers without cancer. These five samples were randomly and separately placed into five boxes. A Labrador retriever specially trained in scent detection of cancer and a handler cooperated in the tests. The dog first smelled a standard breath sample from a patient with CRC, then smelled each sample station and sat down in front of the station in which a cancer scent was detected.Results33 and 37 groups of breath and watery stool samples, respectively, were tested. Among patients with CRC and controls, the sensitivity of canine scent detection of breath samples compared with conventional diagnosis by colonoscopy was 0.91 and the specificity was 0.99. The sensitivity of canine scent detection of stool samples was 0.97 and the specificity was 0.99. The accuracy of canine scent detection was high even for early cancer. Canine scent detection was not confounded by current smoking, benign colorectal disease or inflammatory disease.ConclusionsThis study shows that a specific cancer scent does indeed exist and that cancer-specific chemical compounds may be circulating throughout the body. These odour materials may become effective tools in CRC screening. In the future, studies designed to identify cancer-specific volatile organic compounds will be important for the development of new methods for early detection of CRC.
Akt (protein kinase B) is a serine/threonine kinase which is a central regulator of widely divergent cellular processes including proliferation, differentiation, migration, survival and metabolism. Akt is activated by a variety of stimuli, through growth factor receptors, in phosphatidylinositol 3-kinase (PI3K)-dependent manner. Akt is also negatively regulated by the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN). A disruption of normal Akt/PKB/PTEN signaling frequently occurs in many human cancers, which plays an important role in cancer development, progression and therapeutic resistance. Numerous studies have revealed the blockage of Akt signaling to result in apoptosis and growth inhibition of tumor cells. Therefore, this signaling pathway, including both upstream and downstream of Akt, has recently attracted considerable attention as a new target for effective cancer therapeutic strategies. In fact, many inhibitors of Akt pathway have been identified and clinical studies of some agents are ongoing. In this review, we describe Akt signaling pathway components and its cellular functions as well as the alterations in human cancers and the therapeutic approaches for targeting the Akt pathway in cancer.
Recent studies have shown that the tumor microenvironment plays an important role in cancer progression. Tumor-associated macrophages (TAMs), in particular, have been found to be associated with tumor progression. Macrophages have multiple biological roles, including antigen presentation, target cell cytotoxicity, removal of foreign bodies, tissue remodeling, regulation of inflammation, induction of immunity, thrombosis, and endocytosis. Recent immunological studies have identified two distinct states of polarized macrophage activation: the classically activated (M1) and the alternatively activated (M2) macrophage phenotypes. Bacterial moieties such as lipopolysaccharides and the Th1 cytokine interferon-γ polarize macrophages toward the M1 phenotype. The M2 polarization was discovered as a response to the Th2 cytokine interleukin-4. In general, M2 macrophages exert immunoregulatory activity, participate in polarized Th2 responses, and aid tumor progression. TAMs have recently been found to play an important role in hepatocellular carcinoma (HCC) progression. Based on the properties of TAMs, obtained from pathological examination of resected specimens, we have identified new therapeutic approaches, involving the targeting of TAMs with adjuvant therapy after hepatic resection for HCC. This review discusses the roles of TAM in HCC progression and the possibility of new therapies targeting TAMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.