The flow field around a rotationally oscillating circular cylinder in a uniform flow is studied by using a particle image velocimetry to understand the mechanism of drag reduction and the corresponding suppression of vortex shedding in the cylinder wake at low Reynolds number. Experiments are conducted on the flow around the circular cylinder under rotational oscillation at forcing Strouhal number 1, rotational amplitude 2 and Reynolds number 2,000. It is found from the flow measurement by PIV that the width of the wake is narrowed and the velocity fluctuations are reduced by the rotational oscillation of the cylinder, which results in the drag reduction rate of 30%. The mechanism of drag reduction is studied by phase-averaged PIV measurement, which indicates the formation of periodic small-scale vortices from both sides of the cylinder. It is found from the cross-correlation measurement between the velocity fluctuations that the large-scale structure of vortex shedding is almost removed in the cylinder wake, when the small-scale vortices are generated at the unstable frequency of shear layer by the influence of rotational oscillation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.