early in vivo studies demonstrated the involvement of a tumor-suppressing transcription factor, p53, into cellular droplets such as Cajal and promyelocytic leukemia protein bodies, suggesting that the liquid-liquid phase separation (LLPS) might be involved in the cellular functions of p53. To examine this possibility, we conducted extensive investigations on the droplet formation of p53 in vitro. First, p53 itself was found to form liquid-like droplets at neutral and slightly acidic pH and at low salt concentrations. Truncated p53 mutants modulated droplet formation, suggesting the importance of multivalent electrostatic interactions among the N-terminal and C-terminal domains. Second, FRET efficiency measurements for the dimer mutants of p53 revealed that distances between the core domains and between the C-terminal domains were modulated in an opposite manner within the droplets. Third, the molecular crowding agents were found to promote droplet formation, whereas ssDNA, dsDNA, and ATP, to suppress it. Finally, the p53 mutant mimicking posttranslational phosphorylation did not form the droplets. We conclude that p53 itself has a potential to form droplets that can be controlled by cellular molecules and by posttranslational modifications, suggesting that LLPS might be involved in p53 function. Tumor suppressor p53 is a multifunctional transcription factor that induces cell cycle arrest, DNA repair or apoptosis upon binding to its target DNA sequence. In 50% of human cancers, mutations on p53 are found to hamper its binding to the target sequence. Accordingly, extensive investigations have been conducted to characterize the functions as well as malfunctions of p53. However, an important aspect of p53, namely its involvement in liquid-like droplets, is still largely unresolved. In fact, p53 has long been known to be uptaken into cellular droplets such as Cajal and promyelocytic leukemia protein (PML) bodies. In this report, we describe that p53 itself can form liquid-like droplets upon the control of solution conditions, suggesting a possible involvement of the p53 droplets in the cellular environment. The primary function of p53 is the accommodation of various posttranslational modifications, termed activation, which in turn triggers the search for and the binding to its target DNA sequence, leading to the expression of downstream genes 1. p53 is composed of the N-terminal (NT) (residues 1-95), the core (95-293), the linker (293-326), the tetramerization (Tet) (326-357), and the C-terminal (CT) (357-393) domains. p53 slides along nonspecific DNA by attaching the CT domain to the DNA and by hopping the core domain 2-4. The sliding of p53 occurs in two modes 5,6 , in which the CT, core and linker domains are differently in contact with the DNA 7. The recognition efficiency of the target sequence by the sliding p53 is low, but is enhanced by the activation of p53 8. Furthermore, the sliding p53 can transfer from one DNA strand to another using the CT domain 9. In addition,
Genetic polymorphisms of enzymes involved in the metabolism of carcinogens are suggested to modify an individual's susceptibility to lung cancer. The purpose of this study was to investigate the relationship between lung cancer cases in Japan and variant alleles of cytochrome P450 (CYP) 2A6 (CYP2A6*4), CYP2A13 (CYP2A13*1-*10), CYP4B1 (CYP4B1*1-*7), sulfotransferase 1A1 (SULT1A1*2), glutathione S-transferase M1 (GSTM1 null), and glutathione S-transferase T1 (GSTT1 null). We investigated the distribution of these polymorphisms in 192 lung cancer patients and in 203 age- and sex-matched cancer-free controls. The polymorphisms were analyzed using various techniques including allele-specific PCR, hybridization probe assay, multiplex PCR, denaturing high-performance liquid chromatography (DHPLC), and direct sequencing. We also investigated allele and genotype frequencies and their association with lung cancer risk, demographic factors, and smoking status. The prevalence of the CYP2A6*4/*4 genotype in lung cancer cases was 3.6%, compared with 9.4% in the controls (adjusted OR = 0.36, 95% CI = 0.15-0.88, P = 0.025). In contrast, there was no association between the known CYP2A13, CYP4B1, SULT1A1, GSTM1, and GSTT1 polymorphisms and lung cancer. These data indicate that CYP2A6 deletions may be associated with lung cancer in the Japanese population studied.
ABSTRACT:Artemether (AM) is one of the most effective antimalarial drugs. The elimination half-life of AM is very short, and it shows large interindividual variability in pharmacokinetic parameters. The aim of this study was to identify cytochrome P450 (P450) isozymes responsible for the demethylation of AM and to evaluate functional differences between 26 CYP2B6 allelic variants in vitro. Of 14 recombinant P450s examined in this study, CYP2B6 and CYP3A4 were primarily responsible for production of the desmethyl metabolite dihydroartemisinin. The intrinsic clearance (V max /K m ) of CYP2B6 was 6-fold higher than that of CYP3A4. AM demethylation activity was correlated with CYP2B6 protein levels (P ؍ 0.004); however, it was not correlated with CYP3A4 protein levels (P ؍
BackgroundWe previously reported the association between blood–brain barrier (BBB) dysfunction and glucose‐regulated protein 78 (GRP 78) autoantibodies in neuromyelitis optica (NMO).ObjectiveWe clarify whether the BBB‐endothelial cell activation induced by immunoglobulin G (IgG) is associated with the clinical phenotype, disease activity, and markers of BBB disruption.MethodsWe purified serum IgG from 24 serum samples from patients with NMO spectrum disorder (NMOSD), who were positive for anti‐AQP4 antibodies (longitudinally extensive transverse myelitis [LETM], n = 14; optic neuritis [ON], n = 6; other phenotype, n = 4) and nine healthy controls. IgG was exposed to human brain microvascular endothelial cells (TY10) and the number of nuclear NF‐κB p65‐positive cells, as a marker of endothelial cell activation, was analyzed using a high‐content imaging system. Change in BBB permeability was also measured. The presence of GRP78 autoantibodies was detected by Western blotting.ResultsIn the LETM group, IgG significantly induced the nuclear translocation of NF‐κB p65 in comparison to the ON and healthy control groups. A significant correlation was observed between the number of NF‐κB nuclear‐positive cells and clinical markers of BBB disruption, including Gd enhancement in spinal MRI and the cerebrospinal fluid/serum albumin ratio. This effect was significantly reduced at the remission phase in the individual NMOSD patients. Furthermore, GRP78 antibody positivity was associated with the LETM phenotype and disease severity in NMOSD patients.ConclusionEndothelial cell activation was associated with the LETM phenotype, clinical markers of BBB disruption and disease activity. These observations may explain the phenotypic differences between the NMOSD subtypes, LETM, and isolated ON.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.