Idiopathic normal pressure hydrocephalus (iNPH) is a highly prevalent condition in the elderly population; however, the underlying pathophysiology in relation to the aging process remains unclear. To investigate the effect of removal of cerebrospinal fluid by lumbar “tap test” on the cerebral circulation in patients with iNPH, 14 patients with “probable” iNPH were studied using a novel blood tracking technique based on blood oxygenation level-dependent (BOLD) magnetic resonance signal intensity. By tracking the propagation of the low-frequency component of the BOLD signal, extended venous drainage times were observed in the periventricular region of the patients, which was reversed by tap test. Interestingly, the venous drainage time in the periventricular region exhibited an age-related prolongation in the healthy control group. Additional regression analyses involving 81 control subjects revealed a dissociation of deep and superficial venous systems with increasing age, presumably reflecting focal inefficiency in the deep system. Our results not only provide insights into the etiology of iNPH, but also point to a potential non-invasive biomarker for screening iNPH.
We investigated the intervention effect of training using a feedback-type tactile discrimination system on sensorimotor dysfunction of the hand after a stroke. A human male subject with sensorimotor dysfunction in his left hand after a stroke was asked to perform peg manipulation practice, a building block stacking task, and a material identification task for 10 min each for six weeks. During the activities, a tactile discrimination feedback system was used. The system is a device that detects the vibration information generated when touching an object with a hand and that feeds back the captured information in real time as vibration information. After the intervention, in addition to the reorganization of the sensorimotor areas, the deep sensation, sense of agency, numbness, amount of use, and quality of the left-hand movement improved. Our results suggest that training with the use of a feedback system could be a new form of rehabilitation for sensorimotor dysfunction of the hand.