Melatonin, discovered in 1958, is secreted by the pineal gland primarily during the night. Its secretion is controlled by the light/dark cycle of the environment. Melatonin is also produced in and secreted by various extrapineal organs, tissues and cells and its synthesizing enzyme arylalkylamine N-acetyltransferase (AANAT) is expressed in various extrapineal organs, tissues and cells. Recently, it was reported that melatonin is present in saliva, but it is not certain where melatonin was synthesized and whether it was secreted into saliva and what function it may have in saliva. The present study was performed to investigate where melatonin was synthesized and whether it was secreted by salivary glands into saliva. We performed immunohistochemical analysis of the expression of AANAT in rat parotid, submandibular and sublingual glands and the expression of both AANAT and hydroxyindole-O-methyltransferase (HIOMT) in human submandibular glands. We evaluated the expression of AANAT and HIOMT mRNA in rat submandibular glands by quantitative reverse transcription-polymerase chain reaction. As a result, we observed expression of AANAT in epithelial cells of striated ducts in rat salivary glands and expression of AANAT, HIOMT and melatonin in epithelial cells of striated ducts in human submandibular glands. In addition, we also confirmed the expression of the most potent melatonin receptor, melatonin 1a receptor, in rat buccal mucosa. Our findings suggest that melatonin might be produced and secreted by salivary glands directly into saliva and that it might play some physiological role in the oral cavity.
Melatonin is known to regulate a variety of physiological processes including control of circadian rhythms, regulation of seasonal reproductive function, regulation of body temperature, free radical scavenging, and so forth. Accumulating evidence from in vitro and in vivo experiments has also suggested that melatonin may have an inXuence on skeletal growth and bone formation. However, little is known about the eVects of melatonin on tooth development and growth, which thus remain to be elucidated. This study was performed to examine the possibility that melatonin might exert its inXuence on tooth development as well as skeletal growth. Immunohistochemical analysis revealed that melatonin 1a receptor (Mel1aR) was expressed in secretory ameloblasts, the cells of the stratum intermedium and stellate reticulum, external dental epithelial cells, odontoblasts, and dental sac cells. Reverse transcription-polymerase chain reaction and Western blot analysis showed that HAT-7, a rat dental epithelial cell line, expressed Mel1aR and its expression levels increased after the cells reached conXuence. These results strongly suggest that melatonin may play a physiological role in tooth development/growth by regulating the cellular function of odontogenic cells in tooth germs.
Leptin, a 16 kDa non-glycolated polypeptide of 146 amino acids produced by the ob gene, has a variety of physiological roles not only in lipid metabolism, hematopoiesis, thermogenesis and ovarian function, but also in angiogenesis. This study focuses to investigate the possibility that leptin, as an angiogenic factor, may regulate the angiogenesis during tooth development. We firstly studied the expression of leptin and vascular endothelial growth factor (VEGF) during tooth development immunohistochemically. This investigation revealed that leptin is expressed in ameloblasts, odontoblasts, dental papilla cells and stratum intermedium cells. This expression pattern was similar to that of VEGF, one of the most potent angiogenic factors. Interestingly, more leptin-positive cells were observed in the upper third portion of dental papilla, which is closest to odontoblastic layer, compared to middle and lower thirds. Moreover, in the dental papilla, more CD31 and/or CD34-positive vascular endothelial cells were observed in the vicinity of ameloblasts and odontoblasts expressing leptin and VEGF. These findings strongly suggest that ameloblasts, odontoblasts and dental papilla cells induce the angiogenesis in tooth germs by secretion of leptin as well as VEGF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.