Core-shell structured ZIF-8@ZIF-67 crystals are well-designed and prepared through a seed-mediated growth method. After thermal treatment of ZIF-8@ZIF-67 crystals, we obtain selectively functionalized nanoporous hybrid carbon materials consisting of nitrogen-doped carbon (NC) as the cores and highly graphitic carbon (GC) as the shells. This is the first example of the integration of NC and GC in one particle at the nanometer level. Electrochemical data strongly demonstrate that this nanoporous hybrid carbon material integrates the advantageous properties of the individual NC and GC, exhibiting a distinguished specific capacitance (270 F·g(-1)) calculated from the galvanostatic charge-discharge curves at a current density of 2 A·g(-1). Our study not only bridges diverse carbon-based materials with infinite metal-organic frameworks but also opens a new avenue for artificially designed nanoarchitectures with target functionalities.
Nanoporous carbon particles with magnetic Co nanoparticles (Co/NPC particles) are synthesized by one-step carbonization of zeolitic imidazolate framework-67 (ZIF-67) crystals. After the carbonization, the original ZIF-67 shapes are preserved well. Fine magnetic Co nanoparticles are well dispersed in the nanoporous carbon matrix, with the result that the Co/NPC particles show a strong magnetic response. The obtained nanoporous carbons show a high surface area and well-developed graphitized wall, thereby realizing fast molecular diffusion of methylene blue (MB) molecules with excellent adsorption performance. The Co/NPC possesses an impressive saturation capacity for MB dye compared with the commercial activated carbon. Also, the dispersed magnetic Co nanoparticles facilitate easy magnetic separation.
Nanoporous carbon particles with different particle sizes are synthesized by simple carbonization of monodispersed zeolitic imidazolate framework-8 (ZIF-8) crystals. Quartz crystal microbalance (QCM) study proves that the use of small-sized nanoporous carbon can lead to both a large adsorption uptake and a faster sensor response for toxic toluene molecules.
Here we report a novel hard-templating strategy for the synthesis of mesoporous monocrystalline Pt nanoparticles (NPs) with uniform shapes and sizes. Mesoporous Pt NPs were successfully prepared through controlled chemical reduction using ascorbic acid by employing 3D bicontinuous mesoporous silica (KIT-6) and 2D mesoporous silica (SBA-15) as a hard template. The particle size could be controlled by changing the reduction time. Interestingly, the Pt replicas prepared from KIT-6 showed polyhedral morphology. The single crystallinity of the Pt fcc structure coherently extended over the whole particle.
Nanoporous carbons (NPCs) have large specific surface areas, good electrical and thermal conductivity, and both chemical and mechanical stability, which facilitate their use in energy storage device applications. In the present study, highly graphitized NPCs are synthesized by one-step direct carbonization of cobalt-containing zeolitic imidazolate framework-67 (ZIF-67). After chemical etching, the deposited Co content can be completely removed to prepare pure NPCs with high specific surface area, large pore volume, and intrinsic electrical conductivity (high content of sp(2) -bonded carbons). A detailed electrochemical study is performed using cyclic voltammetry and galvanostatic charge-discharge measurements. Our NPC is very promising for efficient electrodes for high-performance supercapacitor applications. A maximum specific capacitance of 238 F g(-1) is observed at a scan rate of 20 mV s(-1) . This value is very high compared to previous works on carbon-based electric double layer capacitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.