A new super-multilayer alternating laminated film in the shape of a rectangle with round corners has been developed. The super-multilayer film, which comprised piezoelectric poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) films, was wound with the number of turns on the order of from 100 to 1000 to form piezoelectric rolls. These piezoelectric rolls could generate an induced voltage of more than 95% of the initial voltage for over 10 s when a constant load was applied. The desired duration and magnitude of the piezoelectric response voltage were realized by adjusting the number of turns of the piezoelectric rolls. Similarly to many other conventional piezoelectrics, the piezoelectric rolls enable instantaneous load-dependent voltage generation and attenuation. The piezoelectric rolls are also lighter than conventional piezoelectric ceramics and can be used as a novel pressure sensor.
Dual-gate organic thin-film transistors (DGOTFTs), which exhibit better electrical properties, in terms of on-current and subthreshold slope than those of single-gate organic thin-film transistors (OTFTs) are promising devices for high-performance and robust organic electronics. Electrical behaviors of high-voltage (>10 V) DGOTFTs have been studied: however, the performance analysis in low-voltage DGOTFTs has not been reported because fabrication of low-voltage DGOTFTs is generally challenging. In this study, we successfully fabricated low-voltage (<5 V) DGOTFTs by employing thin parylene film as gate dielectrics and visualized the charge carrier distributions in low-voltage DGOTFTs by a simulation that is based on finite element method (FEM). The simulation results indicated that the dual-gate system produces a dual-channel and has excellent control of charge carrier density in the organic semiconducting layer, which leads to the better switching characteristics than the single-gate devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.