Patients with ovarian clear cell carcinoma (OCCC) experience frequent recurrence, which is most likely due to chemoresistance. We used shotgun proteomics analysis and identified upregulation of ezrin-binding phosphoprotein 50 (EBP50) in recurrent OCCC samples. Cytoplasmic and/or nuclear (Cyt/N), but not membranous, EBP50 immunoreactivity was significantly higher in recurrent OCCC as compared to that of primary tumors. OCCC cells expressing cytoplasmic EBP50 were significantly less susceptible to cisplatin (CDDP)-induced apoptosis compared to cells expressing membranous EBP50. Abrogation of resistance following knockdown of cytoplasmic EBP50 was accompanied by decreased XIAP and BCL2, increased BAX and increased caspase-3 cleavage. We found that poly (ADP-ribose) polymerase1 (PARP1), which is involved in DNA damage detection and repair, binds to EBP50 through its PDZ1 domain. CDDP treatment of cells expressing cytoplasmic (but not membranous) EBP50 increased nuclear PARP1 expression, whereas knockdown of EBP50 cells decreased PARP1 expression and activity following CDDP treatment. Finally, OCCC patients with a combination of Cyt/N EBP50 and high PARP1 score had worst the prognosis for overall and progression-free survival. Together, our data suggest that cytoplasmic EBP50 inhibits apoptosis and promotes OCCC survival through stabilization of PARP1 activity and modulation of the XIAP/BCL2/BAX axis. This may increase the likelihood of tumor recurrence, and we therefore suggest a combined analysis for EBP50 and PARP1 may have great utility in OCCC prediction and prognosis.
Background: We previously demonstrated that ovarian high grade serous carcinomas (OHGSeCa) and ovarian clear cell carcinomas (OCCCa) with an HNF-1β+/p53+/ARID1A+ immunophenotype were associated with the worst unfavorable prognosis. To clarify the molecular mechanisms underlying this finding, we focused on alterations in the p53 signaling pathway in these tumors. Methods: Changes in cell phenotype and function following knockdown of wild-type p53 (p53-KD) were assessed using OCCCa cells expressing endogenous HNF-1β and ARID1A. The prognostic significance of molecules that were deregulated following p53-KD was also examined using 129 OCCCa/OHGSeCa cases. Results: p53-KD cells had increased expression of Snail, phospho-Akt (pAkt), and pGSK3β, and decreased E-cadherin expression, leading to epithelial-mesenchymal transition (EMT)/cancer stem cell (CSC) features. The cells also exhibited acceleration of cell motility and inhibition of cell proliferation and apoptosis. Next generation sequencing revealed that fibronectin (FN) expression was significantly increased in the p53 KD-cells, in line with our observation that wild-type p53 (but not mutant p53) repressed FN1 promoter activity. In addition, treatment of OCCCa cells with FN significantly increased cell migration capacity and decreased cell proliferation rate, independent of induction of EMT features. In clinical samples, FN/p53 scores were significantly higher in OCCCa/OHGSeCa with the HNF-1β+/p53+/ARID1A+ immunophenotype when compared to others. Moreover, high FN/high p53 expression was associated with the worst overall survival and progression-free survival in OCCCa/OHGSeCa patients. Conclusion: These findings suggest that upregulation of FN following loss of p53 function may impact the biological behavior of OCCCa/OHGSeCa, particularly in tumors with an HNF-1β+/p53+/ARID1A+ immunophenotype, through alterations in cell mobility and cell proliferation. The accompanying induction of EMT/ CSC properties and inhibition of apoptosis due to p53 abnormalities also contribute to the establishment and maintenance of tumor phenotypic characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.