Network coordinates (NCs) construct a logical space which enables efficient and accurate estimation of network latency. Although many researchers have proposed NCbased strategies to reduce the lookup latency of distributed hash tables (DHTs), these strategies are limited in the improvement of the lookup latency; the nearest node to which a query should be forwarded is not always included in the consideration scope of a node. This is because conventional DHTs assign node IDs independent of the underlying physical network. In this paper, we propose an NC-based method of constructing a topology-aware DHT by Proximity Identifier Selection strategy (PIS/NC). PIS/NC assigns an ID to each node based on NC of the node. This paper presents Canary, a PIS/NC-based CAN whose d-dimensional logical space corresponds to that of Vivaldi. Our simulation results suggest that PIS/NC has the possibility of dramatically improving the lookup latency of DHTs. Whereas DHash++ is only able to reduce the median lookup latency by 15% of the original Chord, Canary reduces it by 70% of the original CAN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.