The homeostasis of animals is regulated not only by the growth and differentiation of cells, but also by cell death through a process known as apoptosis. Apoptosis is mediated by members of the caspase family of proteases, and eventually causes the degradation of chromosomal DNA. A caspase-activated deoxyribonuclease (CAD) and its inhibitor (ICAD) have now been identified in the cytoplasmic fraction of mouse lymphoma cells. CAD is a protein of 343 amino acids which carries a nuclear-localization signal; ICAD exists in a long and a short form. Recombinant ICAD specifically inhibits CAD-induced degradation of nuclear DNA and its DNase activity. When CAD is expressed with ICAD in COS cells or in a cell-free system, CAD is produced as a complex with ICAD: treatment with caspase 3 releases the DNase activity which causes DNA fragmentation in nuclei. ICAD therefore seems to function as a chaperone for CAD during its synthesis, remaining complexed with CAD to inhibit its DNase activity; caspases activated by apoptotic stimuli then cleave ICAD, allowing CAD to enter the nucleus and degrade chromosomal DNA.
Various molecules such as cytokines and anticancer drugs, as well as factor deprivation, rapidly induce apoptosis (programmed cell death), which is morphologically characterized by cell shrinkage and the blebbing of plasma membranes and by nuclear condensation. Caspases, particularly caspase 3, are proteases that are activated during apoptosis and which cleave substrates such as poly(ADP-ribose) polymerase, actin, fodrin, and lamin. Apoptosis is also accompanied by the internucleosomal degradation of chromosomal DNA. In the accompanying Article, we have identified and molecularly cloned a caspase-activated deoxyribonuclease (CAD) and its inhibitor (ICAD). Here we show that caspase 3 cleaves ICAD and inactivates its CAD-inhibitory effect. We identified two caspase-3 cleavage sites in ICAD by site-directed mutagenesis. When human Jurkat cells were transformed with ICAD-expressing plasmid, occupation of the receptor Fas, which normally triggers apoptosis, did not result in DNA degradation. The ICAD transformants were also resistant to staurosporine-induced DNA degradation, although staurosporine still killed the cells by activating caspase. Our results indicate that activation of CAD downstream of the caspase cascade is responsible for internucleosomal DNA degradation during apoptosis, and that ICAD works as an inhibitor of this process.
Binding of Fas ligand or an agonistic anti-Fas antibody induces apoptosis in Fas-bearing cells. The interleukin-1Beta-converting enzyme (ICE) is a cysteine protease that is involved in apoptosis induced by various stimuli, including Fas-mediated apoptosis. Several ICE homologues have been identified, and these are subdivided into three groups (ICE-, CPP32-, and Ich-1-like proteases). We show here that specific inhibitors of ICE- or CPP32-like proteases can inhibit Fas-mediated apoptosis. Transient ICE-like activity was found in the cytosolic fraction of Fas-activated cells, whereas ICE-dependent, CPP32-like activity gradually accumulated in the cytosol. Cell lysates from mouse lymphoma supplemented with either recombinant ICE or CPP32 induced apoptosis of nuclei. The CPP32 inhibitor inhibited ICE- or CPP32-induced apoptosis in the cell-free system, whereas the ICE-inhibitor only inhibited ICE-induced apoptosis. Cell extracts from thymocytes from ICE-null mice induced apoptosis in the cell-free system when it was supplemented with CPP32. These results indicate that Fas sequentially activates ICE- and CPP32-like proteases, and that downstream CPP32, together with a component(s) in the cytoplasm, causes apoptosis of nuclei.
We identified in-frame fusion transcripts of KIF5B (the kinesin family 5B gene) and the RET oncogene, which are present in 1-2% of lung adenocarcinomas (LADCs) from people from Japan and the United States, using whole-transcriptome sequencing. The KIF5B-RET fusion leads to aberrant activation of RET kinase and is considered to be a new driver mutation of LADC because it segregates from mutations or fusions in EGFR, KRAS, HER2 and ALK, and a RET tyrosine kinase inhibitor, vandetanib, suppresses the fusion-induced anchorage-independent growth activity of NIH3T3 cells.
Fas is a type-I membrane protein that transduces an apoptotic signal. Binding of Fas ligand or agonistic anti-Fas antibody to Fas kills the cells by apoptosis. Studies in the nematode Caenorhabditis elegans have suggested that proteases such as interleukin-1 beta-converting enzyme (ICE) or the product of the C. elegans cell-death gene ced-3 are involved in apoptotic signal transduction. The activity of ICE can be inhibited by the product of crmA, a cytokine-response modifier gene encoded by cowpox virus. We report here that expression of crmA inhibits cytotoxicity induced by anti-Fas antibody or tumour necrosis factor (TNF). We have found a specific ICE inhibitor tetrapeptide (acetyl-Tyr-Val-Ala-Asp-chloromethylketone) that also prevents apoptosis induced by anti-Fas antibody. These results suggest an involvement of an ICE-like protease in Fas-mediated apoptosis and TNF-induced cytotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.