Despite the importance of stromal cells in tumor progression, our overall understanding of the molecular signals that regulate the complex cellular interactions within tumor stroma is limited. Here, we provide multiple lines of evidence that tumor-associated macrophages (TAM) preferentially traffic to stromal areas formed within tumors in a manner dependent on a hyaluronan (HA)-rich tumor microenvironment. To address the role of stroma-derived HA in macrophage recruitment, we disrupted the HA synthase 2 (Has2) gene in stromal fibroblasts using conditional gene targeting. The Has2 null fibroblasts showed severe impairment in recruiting macrophages when inoculated with tumor cells into nude mice, which shows the contribution of stroma-derived HA in intratumoral macrophage mobilization. Furthermore, a deficiency in stromal HA attenuated tumor angiogenesis and lymphangiogenesis concomitantly with impaired macrophage recruitment. Taken together, our results suggest that stromal HA serves as a microenvironmental signal for the recruitment of TAMs, which are key regulatory cells involved in tumor neovascularization. Cancer Res; 70(18); 7073-83. ©2010 AACR.
The aryl hydrocarbon receptor (AhR) plays a suppressive role in cecal carcinogenesis by CUL4B/AhR-mediated ubiquitylation and degradation of β-catenin, which is activated by xenobiotics and natural ligands. AhR-deficient (AhR(-)(/-)) mice develop cecal tumors with severe inflammation. To elucidate whether the tumors develop autonomously in AhR(-/-) mice due to impaired β-catenin degradation or in association with accelerated inflammation, we performed two kinds of experiments using germ-free (GF) AhR(-/-) mice and compound mutant mice lacking genes for AhR and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), which plays an essential role in caspase-1 activation in inflammasomes. Both GF AhR(-/-) and AhR(-/-)•ASC(-/-) mice showed considerably reduced tumor development compared with that in AhR(-/-) mice albeit in a 'cancer-prone' state with aberrant β-catenin accumulation. Blocking of the interleukin (IL)-1β signaling pathway by treatment with a caspase-1 inhibitor, YVAD, reduced cecal tumorigenesis in AhR(-/-) mice. Signal transducers and activators of transcription 3 (STAT3) activation was detected in the cecal epithelium of the AhR(-/-) mice due to enhanced IL-6 production. An inhibitor of the STAT3 signaling pathway, AG490 suppressed the tumor formation. ASC-mediated inflammation was also found to play a critical role in tumor development in Apc(Min/+) mice, a mouse model of familial adenomatous polyposis. Collectively, these results revealed an important role of the bacteria-triggered or ASC-mediated inflammation signaling pathway in the intestinal tumorigenesis of mice and suggest a possible chemical therapeutic intervention, including AhR ligands and inhibitors of the inflammation pathway.
Cholangiocarcinoma (CCC) is a strongly aggressive malignancy for which surgical resection is the only potential curative therapy. Sorafenib, a multikinase inhibitor of the RAF/MEK/ERK pathway, is a molecular-targeted drug that is approved for hepatocellular carcinoma (HCC) but not for CCC. The differences in signaling pathway characteristics under sorafenib treatment between HCC (HLF, Huh7, PLC/PRF/5) and CCC (RBE, YSCCC, Huh28) cell lines were therefore investigated using cell proliferation, western blotting, and apoptosis analyses. Sorafenib inhibited cell growth significantly less in CCC cells than in HCC cells, with lower suppression of ERK phosphorylation. Significantly decreased AKT Ser473 phosphorylation in HCC cells, and conversely enhanced phosphorylation of AKT Ser473 and mTORC2 in CCC cells, were observed with sorafenib treatment. Disassembly of the mTORC2 complex in RBE cells with siRNA targeting Rictor resulted in the downregulation of AKT Ser473 phosphorylation and enhanced apoptosis presumably via increased FOXO1, which consequently suppressed RBE cell proliferation. Phosphorylation of mTORC1 and autophagy were not influenced by sorafenib in CCC cells. Simultaneous administration of everolimus to suppress activated mTORC1 in RBE cells revealed that combined everolimus and sorafenib treatment under mTORC2 disassembly could enhance growth inhibition through the suppression of both sorafenib- and everolimus-dependent AKT Ser473 phosphorylation in addition to the inhibition of mTORC1 phosphorylation. Prevention of escape by AKT/mTOR signaling from the RAF/MEK/ERK pathway in sorafenib treatment by suppressing mTORC2 activity may lead to promising new approaches in CCC therapy.
Background: KMD-3213 is an a 1A -adrenoceptor-selective antagonist currently being developed for the treatment of urinary outlet obstruction in patients with benign prostatic hyperplasia. In the present study, the uroselectivity of KMD-3213 was evaluated and compared with that of prazosin and tamsulosin in a decerebrate dog model. Methods: Intercollicular decerebration was carried out in male mongrel dogs under anesthesia. The inhibitory effects of intravenously and intraduodenally administered compounds on the increase in intraurethral pressure (IUP) induced by electrical stimulation of the hypogastric nerve were estimated. Systemic blood pressure was measured simultaneously. Results:The a 1 -antagonists tested produced a dose-dependent inhibition of the induced IUP response and decreased mean blood pressure (MBP). The ID 50 of KMD-3213, tamsulosin and prazosin for IUP (dose required to inhibit the increase in IUP by 50%) was 3.15, 1.73 and 11.8 mg/kg i.v., respectively, and the ED 20 for the hypotensive effect (dose required to reduce MBP by 20%) was 8.03, 0.59 and 2.46 mg/kg i.v., respectively. The data indicate that uroselectivity (ED 20 /ID 50 ) of KMD-3213 is 12-and 7.5-fold higher than that of prazosin and tamsulosin, respectively. When the drugs were administered intraduodenally, KMD-3213 was sufficiently absorbed from the digestive tract and continued to demonstrate at least 3.8-fold higher uroselectivity than tamsulosin. Conclusion: Based on these findings, KMD-3213 appears to be an effective orally active compound for decreasing urethral resistance during micturition that does not induce any negative cardiovascular effects in patients with benign prostatic hyperplasia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.