Spinocerebellar ataxia type 6 (SCA6) is an autosomal dominant neurodegenerative disease caused by a small polyglutamine (polyQ) expansion (control: 4–20Q; SCA6: 20–33Q) in the carboxyl(C)-terminal cytoplasmic domain of the α1A voltage-dependent calcium channel (Cav2.1). Although a 75–85-kDa Cav2.1 C-terminal fragment (CTF) is toxic in cultured cells, its existence in human brains and its role in SCA6 pathogenesis remains unknown. Here, we investigated whether the small polyQ expansion alters the expression pattern and intracellular distribution of Cav2.1 in human SCA6 brains. New antibodies against the Cav2.1 C-terminus were used in immunoblotting and immunohistochemistry. In the cerebella of six control individuals, the CTF was detected in sucrose- and SDS-soluble cytosolic fractions; in the cerebella of two SCA6 patients, it was additionally detected in SDS-insoluble cytosolic and sucrose-soluble nuclear fractions. In contrast, however, the CTF was not detected either in the nuclear fraction or in the SDS-insoluble cytosolic fraction of SCA6 extracerebellar tissues, indicating that the CTF being insoluble in the cytoplasm or mislocalized to the nucleus only in the SCA6 cerebellum. Immunohistochemistry revealed abundant aggregates in cell bodies and dendrites of SCA6 Purkinje cells (seven patients) but not in controls (n = 6). Recombinant CTF with a small polyQ expansion (rCTF-Q28) aggregated in cultured PC12 cells, but neither rCTF-Q13 (normal-length polyQ) nor full-length Cav2.1 with Q28 did. We conclude that SCA6 pathogenesis may be associated with the CTF, normally found in the cytoplasm, being aggregated in the cytoplasm and additionally distributed in the nucleus.
Spinocerebellar ataxia type 31 (SCA31) is an autosomal-dominant cerebellar ataxia showing a Purkinje cell (PC)-predominant neurodegeneration in humans. The mutation is a complex penta-nucleotide repeat containing (TGGAA)n , (TAGAA)n , (TAAAA)n and (TAGAATAAAA)n inserted in an intron shared by two different genes BEAN1 and TK2 located in the long arm of the human chromosome 16. Previous studies have shown that (TGGAA)n is the critical component of SCA31 pathogenesis while the three other repeats, also present in normal Japanese, are not essential. Importantly, it has been shown that BEAN1 and TK2 are transcribed in mutually opposite directions in the human brain. Furthermore, abnormal RNA structures called "RNA foci" are observed by a probe against (UAGAAUAAAA)n in SCA31 patients' PC nuclei, indicating that the BEAN1-direction mutant transcript appears instrumental for the pathogenesis. However, it is not known whether the critical repeat (TGGAA)n contributes to the formation of RNA foci, neither do we understand how the RNA foci formation is relevant to the pathogenesis. To address these issues, we investigated two SCA31 cerebella by fluorescence in situ hybridization using a probe against (UGGAA)n . We also asked whether the mutant BEAN1-transcript containing (UGGAA)n exerts toxicity compared to the other three repeats in cultured cells. Histopathologically, we confirm that the PC is the main target of SCA31 pathogenesis. We find that the RNA foci containing (UGGAA)n are indeed observed in PC nuclei of both SCA31 patients, whereas similar foci were not observed in control individuals. In both transiently and stably expressed cultured cell models, we also find that the mutation transcribed in the BEAN1-direction yields more toxicity than control transcripts and forms RNA foci detected with probes against (UGGAA)n and (UAGAAUAAAA)n . Taking these findings together, we conclude that the RNA foci containing BEAN1-direction transcript (UGGAA)n are associated with PC degeneration in SCA31.
Abstractp25α/tubulin polymerization promoting protein (TPPP) is an oligodendroglial protein that plays crucial roles including myelination, and the stabilization of microtubules. In multiple system atrophy (MSA), TPPP is suggested to relocate from the myelin sheath to the oligodendroglial cell body, before the formation of glial cytoplasmic inclusions (GCIs), the pathologic hallmark of MSA. However, much is left unknown about the re-distribution of TPPP in MSA. We generated new antibodies against the N-and C-terminus of TPPP, and analyzed control and MSA brains, including the brain of a familial MSA patient carrying homozygous mutations in the coenzyme Q2 gene (COQ2). In control brain tissues, TPPP was localized not only in the cytoplasmic component of the oligodendroglia including perinuclear cytoplasm and peripheral processes in the white matter, but also in the nucleus of a fraction (62.4%) of oligodendroglial cells. Immunoelectron microscopic analysis showed TPPP in the nucleus and mitochondrial membrane of normal oligodendroglia, while western blot also supported its nuclear and mitochondrial existence. In MSA, the prevalence of nuclear TPPP was 48.6% in the oligodendroglia lacking GCIs, whereas it was further decreased to 19.6% in the oligodendroglia with phosphorylated α-synuclein (pα-syn)-positive GCIs, both showing a significant decrease compared to controls (62.4%). In contrast, TPPP accumulated in the perinuclear cytoplasm where mitochondrial membrane (TOM20 and cytochrome C) and fission (DRP1) proteins were often immunoreactive. We conclude that in MSA-oligodendroglia, TPPP is reduced, not only in the peripheral cytoplasm, but also in the nucleus and relocated to the perinuclear cytoplasm.
Spinocerebellar ataxia type 6 (SCA6) is an autosomal-dominant neurodegenerative disorder caused by a small expansion of tri-nucleotide (CAG) repeat encoding polyglutamine (polyQ) in the gene for α(1A) voltage-dependent calcium channel (Ca(v) 2.1). Thus, this disease is one of the nine neurodegenerative disorders called polyQ diseases. The Purkinje cell predominant neuronal loss is the characteristic neuropathology of SCA6, and a 75-kDa carboxy-terminal fragment (CTF) of Ca(v) 2.1 containing polyQ, which remains soluble in normal brains, becomes insoluble in the cytoplasm of SCA6 Purkinje cells. Because the suppression of the brain-derived neurotrophic factor (BDNF) expression is a potentially momentous phenomenon in many other polyQ diseases, we implemented BDNF expression analysis in SCA6 human cerebellum using quantitative RT-PCR for the BDNF mRNA, and by immunohistochemistry for the BDNF protein. We observed significantly reduced BDNF mRNA levels in SCA6 cerebellum (n = 3) compared to controls (n = 6) (Mann-Whitney U-test, P = 0.0201). On immunohistochemistry, BDNF protein was only weakly stained in control cerebellum. On the other hand, we found numerous BDNF-immunoreactive granules in dendrites of SCA6 Purkinje cells. We did not observe similar BDNF-immunoreactive granules in other polyQ diseases, such as Huntington's disease or SCA2. As we often observed that the 1C2-positive Ca(v) 2.1 aggregates existed more proximally than the BDNF-positive granules in the dendrites, we speculated that the BDNF protein trafficking in dendrites may be disturbed by Ca(v) 2.1 aggregates in SCA6 Purkinje cells. We conclude that the SCA6 pathogenic mechanism associates with the BDNF mRNA expression reduction and abnormal localization of BDNF protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.