High‐resolution scanning electrochemical cell microscopy (SECCM) is used to image and quantitatively analyze the hydrogen evolution reaction (HER) catalytically active sites of 1H‐MoS2 nanosheets, MoS2, and WS2 heteronanosheets. Using a 20 nm radius nanopipette and hopping mode scanning, the resolution of SECCM was beyond the optical microscopy limit and visualized a small triangular MoS2 nanosheet with a side length of ca. 130 nm. The electrochemical cell provides local cyclic voltammograms with a nanoscale spatial resolution for visualizing HER active sites as electrochemical images. The HER activity difference of edge, terrace, and heterojunction of MoS2 and WS2 were revealed. The SECCM imaging directly visualized the relationship of HER activity and number of MoS2 nanosheet layers and unveiled the heterogeneous aging state of MoS2 nanosheets. SECCM can be used for improving local HER activities by producing sulfur vacancies using electrochemical reaction at the selected region.
The g-factor of the exteremely proton-rich nucleus 23 Al(T 1/2 = 0.47 s) has been measured for the first time, applying -NMR technique on this nucleus implanted in Si. The obtained |g| = (1.58 T 0.2) suggests that the spin of the ground state of 23 Al is 5 / 2. The magnetic moment is determined as |"| = (3.95 T 0.55) " N .
Microstructures of amorphous In–Ga–Zn–O (a-IGZO) thin films of different densities were analyzed. Device-quality a-IGZO films were deposited under optimum conditions, e.g., the total pressure P
tot = 0.55 Pa produced high film densities of ∼6.1 g/cm3, while a very high P
tot = 5.0 Pa produced low film densities of 5.5 g/cm3. Both films formed uniform high-density layers in the vicinity of the glass substrate, 10–20 nm in thickness depending on P
tot, while their growth mode changed to a sparse columnar structure in thicker regions. X-ray reflectivity and in situ spectroscopic ellipsometry provided different results on densification by post deposition thermal annealing; i.e., the latter has a higher sensitivity. High-Z-contrast images obtained by high-angle annular dark-field scanning transmission electron microscopy were also useful for detecting nanometer-size non uniformity even in device-quality a-IGZO films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.