[1] Bromoform (CHBr 3 ), dibromochloromethane (CHBr 2 Cl), and dibromomethane (CH 2 Br 2 ) in the atmosphere were measured at various sites, including tropical islands, the Arctic, and the open Pacific Ocean. Up to 40 ppt of bromoform was observed along the coasts of tropical islands under a sea breeze. Polybromomethane concentrations were highly correlated among the coastal samples, and the ratios CH 2 Br 2 /CHBr 3 and CHBr 2 Cl/ CHBr 3 showed a clear tendency to decrease with increasing CHBr 3 concentration. These findings are consistent with the observations that polybromomethanes are emitted mostly from macroalgae whose growth is highly localized to coastal areas and that CHBr 3 has the shortest lifetime among these three compounds. The relationship between the concentration ratios CHBr 3 /CH 2 Br 2 and CHBr 2 Cl/CH 2 Br 2 suggested a large mixing/ dilution effect on bromomethane ratios in coastal regions and yielded a rough estimate of 9 for the molar emission ratio of CHBr 3 /CH 2 Br 2 and of 0.7 for that of CHBr 2 Cl/CH 2 Br 2 . Using these ratios and an global emission estimate for CH 2 Br 2 (61 Gg/yr (Br)) calculated from its background concentration, the global emission rates of CHBr 3 and CHBr 2 Cl were calculated to be approximately 820(±310) Gg/yr (Br) and 43(±16) Gg/yr (Br), respectively, assuming that the bromomethanes ratios measured in this study are global representative. The estimated CHBr 3 emission is consistent with that estimated in a very recent study by integrating the sea-to-air flux database. Thus the contribution of CHBr 3 and CHBr 2 Cl to inorganic Br in the atmosphere is likely to be more important than previously thought. Citation: Yokouchi, Y., et al. (2005), Correlations and emission ratios among bromoform, dibromochloromethane, and dibromomethane in the atmosphere,
Tropical instability waves (TIWs), with a typical wavelength of 1000 km and period of 30 days, cause the equatorial front to meander and result in SST variations on the order of 1Њ-2ЊC. Vertical soundings of temperature, humidity, and wind velocity were obtained on board a Japanese research vessel, which sailed through three fully developed SST waves from 140Њ to 110ЊW along 2ЊN during 21-28 September 1999. A strong temperature inversion is observed throughout the cruise along 2ЊN, capping the planetary boundary layer (PBL) that is 1-1.5 km deep. Temperature response to TIW-induced SST changes penetrates the whole depth of the PBL. In response to an SST increase, air temperature rises in the lowest kilometer and shows a strong cooling at the mean inversion height. As a result, this temperature dipole is associated with little TIW signal in the observed sea level pressure (SLP). The cruise mean vertical profiles show a speed maximum at 400-500 m for both zonal and meridional velocities. SST-based composite profiles of zonal wind velocity show weakened (intensified) vertical shear within the PBL that is consistent with enhanced (reduced) vertical mixing, causing surface wind to accelerate (decelerate) over warm (cold) SSTs. Taken together, the temperature and wind soundings indicate the dominance of the vertical mixing over the SLP-driving mechanism. Based on the authors' measurements, a physical interpretation of the widely used PBL model proposed by Lindzen and Nigam is presented.
The Superconducting Submillimeter‐Wave Limb‐Emission Sounder (SMILES) was successfully launched and attached to the Japanese Experiment Module (JEM) on the International Space Station (ISS) on 25 September 2009. It has been making atmospheric observations since 12 October 2009 with the aid of a 4 K mechanical cooler and superconducting mixers for submillimeter limb‐emission sounding in the frequency bands of 624.32–626.32 GHz and 649.12–650.32 GHz . On the basis of the observed spectra, the data processing has been retrieving vertical profiles for the atmospheric minor constituents in the middle atmosphere, such as O3 with isotopes, HCl, ClO, HO2, BrO, and HNO3. Results from SMILES have demonstrated its high potential to observe atmospheric minor constituents in the middle atmosphere. Unfortunately, SMILES observations have been suspended since 21 April 2010 owing to the failure of a critical component.
[1] Seasonal and interannual variations in ascent rates are investigated as a function of latitude and height, using water vapor (H 2 O) and methane (CH 4 ) data from the stratospheric measurements of the Halogen Occultation Experiment (HALOE). The ascent rate is inferred from the ascending signal of variations in the entry value of [H 2 O] + 2[CH 4 ] (Ĥ ). Within ±15°of the equator the derived ascent rate exhibits two kinds of dominant variations with a clear latitudinal structure, seasonal variation, and the quasibiennial oscillation (QBO). The seasonal cycle exhibits a vertically in-phase variation, with a northern winter maximum of 0.2-0.4 mm s À1 and a summer minimum of $0.2 mm s À1 in the 20-60 hPa layer. The latitudinal structure is characterized by an early appearance of a subtropical summer maximum of the ascent rate and by double peaks at 10-15°N and S during the northern winter season. The QBO component of the ascent rate shows tropically confined anomalies with a rapid downward propagation, but mass attenuation anomalies estimated from the ascent rate show a much slower downward propagation. The descent anomalies exhibit a well-structured and equatorially symmetric variation, while the ascent anomalies have a tendency to propagate latitudinally. This might be connected with the phase dependency of the QBO acceleration. An examination of the phase and amplitude of the ascent rate and temperature for both the seasonal and QBO components emphasizes that the radiative damping timescale is considerably long (40-100 days) below 40 hPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.