Platinum-catalyzed diborylation of phenylethynyl MIDA boronate with Bpin-Bpin proceeds to yield 1,1,2-triboryl-2-phenylethene with two different classes of the boron functionalities. Sequentially, the obtained 1,1,2-triboryl-2-phenylethene are subjected to Suzuki-Miyaura coupling to introduce a series of aryl groups chemoselectively to afford 1,1-boryl-2,2-diarylethenes.
Synthesis of novel cyclic 1-alkenylboronates is accomplished through the zirconium-mediated regio- and stereoselective double functionalization of 1-alkynylboronates and the subsequent ruthenium-catalyzed ring-closing metathesis (RCM). The obtained substituted cyclic 1-alkenylboronates are transformed into o-terphenyl and triphenylene derivatives.
Synthesis, characterization, and polymer solar cell and transistor application of a series of phenanthro[1,2-b:8,7b 0 ]dithiophene-based donor-acceptor (D-A)-type semiconducting polymers combined with a diketopyrrolopyrrole unit are reported. The present polymers showed some unique features such as strong aggregation behavior, high thermal stability, and short p-p stacking distance (3.5-3.6 Å ), which are suitable for high performance organic materials. In addition, they have a significantly extended absorption up to 1000 nm with a band gap of ca. 1.2 eV. However, such strong intermolecular interaction reduced their solubility and molecular weights, which resulted in low crystalline nature and moderate field-effect mobility of 0.01 cm 2 V 21 s 21 . Furthermore, such strong aggregation behavior led to the large-scale phase separation in the blend films, which may prevent the effective photocurrent generation, limiting J sc and power conversion efficiency of 2.0%. V C 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 709-718
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.