CagA protein is a major virulence factor of Helicobacter pylori, which is delivered into gastric epithelial cells and elicits growth factor–like responses. Once within the cells, CagA is tyrosine phosphorylated by Src family kinases and targets host proteins required to induce the cell responses. We show that the phosphorylated CagA binds Crk adaptor proteins (Crk-II, Crk-I, and Crk-L) and that the interaction is important for the CagA-mediated host responses during H. pylori infection. H. pylori–induced scattering of gastric epithelial cells in culture was blocked by overexpression of dominant-negative Crk and by RNA interference–mediated knockdown of endogenous Crk. H. pylori infection of the gastric epithelium induced disruption of E-cadherin/catenin–containing adherens junctions, which was also dependent on CagA/Crk signaling. Furthermore, inhibition of the SoS1/H-Ras/Raf1, C3G/Rap1/B-Raf, or Dock180/Rac1/Wiskott-Aldrich syndrome protein family verprolin homologous protein pathway, all of which are involved downstream of Crk adaptors, greatly diminished the CagA-associated host responses. Thus, CagA targeting of Crk plays a central role in inducing the pleiotropic cell responses to H. pylori infection that cause several gastric diseases, including gastric cancer.
Colonization of the gastric pits in the stomach by Helicobacter pylori (Hp) is a major risk factor for gastritis, gastric ulcers, and cancer. Normally, rapid self-renewal of gut epithelia, which occurs by a balance of progenitor proliferation and pit cell apoptosis, serves as a host defense mechanism to limit bacterial colonization. To investigate how Hp overcomes this host defense, we use the Mongolian gerbil model of Hp infection. Apoptotic loss of pit cells induced by a proapoptotic agent is suppressed by Hp. The ability of Hp to suppress apoptosis contributed to pit hyperplasia and persistent bacterial colonization of the stomach. Infection with WT Hp but not with a mutant in the virulence effector cagA increased levels of the prosurvival factor phospho-ERK and antiapoptotic protein MCL1 in the gastric pits. Thus, CagA activates host cell survival and antiapoptotic pathways to overcome self-renewal of the gastric epithelium and help sustain Hp infection.
When nucleotide-binding oligomerization domain-like receptors (NLRs) sense cytosolic-invading bacteria, they induce the formation of inflammasomes and initiate an innate immune response. In quiescent cells, inflammasome activity is tightly regulated to prevent excess inflammation and cell death. Many bacterial pathogens provoke inflammasome activity and induce inflammatory responses, including cell death, by delivering type III secreted effectors, the rod component flagellin, and toxins. Recent studies indicated that Shigella deploy multiple mechanisms to stimulate NLR inflammasomes through type III secretion during infection. Here, we show that Shigella induces rapid macrophage cell death by delivering the invasion plasmid antigen H7.8 (IpaH7.8) enzyme 3 (E3) ubiquitin ligase effector via the type III secretion system, thereby activating the NLR family pyrin domain-containing 3 (NLRP3) and NLR family CARD domain-containing 4 (NLRC4) inflammasomes and caspase-1 and leading to macrophage cell death in an IpaH7.8 E3 ligase-dependent manner. Mice infected with Shigella possessing IpaH7.8, but not with Shigella possessing an IpaH7.8 E3 ligase-null mutant, exhibited enhanced bacterial multiplication. We defined glomulin/flagellar-associated protein 68 (GLMN) as an IpaH7.8 target involved in IpaH7.8 E3 ligase-dependent inflammasome activation. This protein originally was identified through its association with glomuvenous malformations and more recently was described as a member of a Cullin ring ligase inhibitor. Modifying GLMN levels through overexpression or knockdown led to reduced or augmented inflammasome activation, respectively. Macrophages stimulated with lipopolysaccharide/ATP induced GLMN puncta that localized with the active form of caspase-1. Macrophages from GLMN +/− mice were more responsive to inflammasome activation than those from GLMN +/+ mice. Together, these results highlight a unique bacterial adaptation that hijacks inflammasome activation via interactions between IpaH7.8 and GLMN.
Several essential oils possess pharmacological effects. Among the various constituents of essential oils, 1, 8-cineole has been shown to possess pharmacological effects such as anti-bacterial and anti-inflammatory effects. The effect of 1, 8-cineole on human colorectal cancer cells, however, has not reported previously. In this study, we have investigated the anti-proliferative effect of 1, 8-cineole on human colon cancer cell lines HCT116 and RKO by WST-8 and BrdU assays. The cytotoxicity of 1, 8-cineole was investigated by LDH activity and TUNEL staining. The mechanism of apoptosis by 1, 8-cineole was determined by western blot analyses. In in vivo study, RKO cells were injected into the SCID mice and the effect of 1, 8-cineole was investigated. Specific induction of apoptosis, not necrosis, was observed in human colon cancer cell lines HCT116 and RKO by 1, 8-cineole. The treatment with 1, 8-cineole was associated with inactivation of survivin and Akt and activation of p38. These molecules induced cleaved PARP and caspase-3, finally causing apoptosis. In xenotransplanted SCID mice, the 1, 8-cineole group showed significantly inhibited tumor progression compared to the control group. These results indicated 1, 8-cineole suppressed human colorectal cancer proliferation by inducing apoptosis. Based on these studies 1, 8-cineole would be an effective strategy to treat colorectal cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.