In this study we examined changes in colonic mucosal permeability induced by dextran sulfate sodium (DSS) during the acute phase of mouse colitis. To induce colitis, the mice were given drinking water containing 5% (w/v) DSS (MW = 40,000) ad libitum. Colonic mucosal permeability was evaluated by the permeation of Evans blue (EB) from the lumen into the wall of the colon on 1, 2, 3 and 7 days postadministration of DSS. Mucosal changes were also histologically examined daily for 7 days postadministration. The permeation of EB increased significantly by days 3 and 7 postadministration. Histological analysis showed that crypt loss was the initial change, with no inflammatory process and the surface mucosal epithelial cells remained morphologically intact. These histological changes developed on 2 to 3 days postadministration. Erosion was first recognized at 5 days postadministration. These findings indicated that the increase in colonic mucosal permeability may have occurred in 3 days postadministration, and the increase in mucosal permeability occurred before the appearance of the inflammatory process. This suggests that an increase in colonic mucosal permeability, leading to the destruction of mucosal barrier function, may play an important role in the induction of DSS-induced murine colitis.
Abstract:In this study, we examined the relationship between the molecular weight of dextran sulfate sodium (DSS) and the features of colitis in a DSS-induced mouse model of human ulcerative colitis. DSS at three different molecular weights, 5 kD, 40 kD and 500 kD, was used in this study. DSS was administered in drinking water at 5% (w/v) to 6-7-weekold female BALB/c mice. After 7 days of treatment with DSS, the large intestine was examined histopathologically. Colitis was characterized by a loss of crypts, infiltration of inflammatory cells into the mucosa and submucosa, edema of the submucosa, erosion and ulceration and was observed in mice given the 5 kD and 40 kD forms but not the 500 kD. In the 5 kD group, colitis was observed predominantly in the cecum and upper colon. Colitis in the 40 kD group was more severe than that in the 5 kD group, and in the 40 kD group it was more severe in the lower colon than in the upper colon. These findings suggest the molecular weight of DSS to be an important factor in the murine model of colitis.
This study presents a histological examination of dextran sodium sulfate (DSS)-induced colitis in germ-free (GF) mice. A comparison of the pathology between GF and conventionalized mice (CVz) was made to determine the role that intestinal microflora play in DSS-induced colitis. To induce colitis, GF and CVz IQI/Jic mice were given either 5% or 1% DSS orally. Administration of 5% DSS, a common concentration used to induce colitis in mice, caused gross rectal bleeding and a marked decrease in hematocrit as early as day one in GF mice. These mice died on day three due to massive bleeding into the intestinal lumen. In contrast, CVz mice did not die during the seven-day experimental period. Histopathological examination three days after administration of 5% DSS did not reveal any colitis lesions in GF mice, but CVz mice had developed moderate colitis in the large intestine. Administration of a low concentration of DSS (1%), which only induces mild basal crypt loss in CVz mice, caused severe colitis in the distal colon in GF mice, and they died on day 14. These data suggest that intestinal microflora are not necessary for the induction of colitis. Furthermore, DSS may be highly toxic to GF mice, and when given at a concentration of 5% it causes massive bleeding into the intestinal lumen resulting in death prior to development of colitis.
Whether fatty streaks are directly followed by fibrous plaque formation in atherosclerosis remains controversial. Disruption of the basement membrane and elastic layers is thought to be essential for this process. Matrix metalloproteinase 12 (MMP-12) can degrade a broad spectrum of substrates, but the role of MMP-12 in the early stage of atherosclerosis is unclear. To investigate MMP-12 function in the initiation and progression of atherosclerosis, we investigated macrophage migration and elastolysis in relation to fatty streaks in human MMP-12 transgenic (hMMP-12 Tg) rabbits. Fatty streaks in hMMP-12 Tg rabbits fed a 1% cholesterol diet for 6 weeks (cholesterol-induced model of atherosclerosis) were more pronounced and were associated with more significant degradation of the internal elastic layer compared with wild-type (WT) animals. Numbers of infiltrating macrophages and smooth muscle cells in the lesions were increased in hMMP-12 Tg compared with WT animals. In both cuff- and ligation-induced models of atherosclerosis, smooth muscle cell-predominant atherosclerotic lesions were elevated with significant elastolysis of the internal elastic lamina in Tg compared with WT animals; "microelastolytic sites" were recognized before formation of the neointima in the cuff model only. These results indicate that MMP-12 may be critical to the initiation and progression of atherosclerosis via degradation of the elastic layers and/or basement membrane. Therefore, a specific MMP-12 inhibitor might prove useful for the treatment of progressive atherosclerosis.
Background-Macrophage metalloelastase (matrix metalloproteinase [MMP]-12) is upregulated in atherosclerotic lesionsand aneurysm; thus, increased MMP-12 activity may play an important role in the pathogenesis of atherosclerosis. However, the pathological roles of MMP-12 in the initiation and progression of atherosclerosis have not been defined. Methods and Results-We compared the susceptibility of MMP-12 transgenic (Tg) rabbits to cholesterol-rich diet-induced atherosclerosis with that of non-Tg littermate rabbits. The rabbits were maintained at either relatively lower levels of hypercholesterolemia for shorter periods or higher levels of hypercholesterolemia for longer periods through a diet containing different amounts of cholesterol. We found no significant difference in the aortic atherosclerotic lesion size or quality between Tg and non-Tg rabbits at lower hypercholesterolemia. At higher hypercholesterolemia for longer periods, however, Tg rabbits developed more extensive atherosclerosis in the aortas and coronary arteries than did non-Tg rabbits. Histological examinations revealed that atherosclerotic lesions of Tg rabbits contained prominent macrophage infiltration associated with marked disruption of the elastic lamina in the tunica media with occasional formation of aneurysm-like lesions. Furthermore, increased expression of MMP-12 derived from macrophages was associated with elevated expression of MMP-3, suggesting that MMP-12 may play a pivotal role in the cascade activation of other MMPs, thereby exacerbating extracellular matrix degradation during the progression of atherosclerosis. Conclusions-Overexpression of MMP-12 causes accelerated atherosclerosis in Tg rabbits. These results suggest that macrophage-derived MMP-12 participates in the progression of atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.