Pipe-sticking during drilling operations causes severe difficulties, including economic losses and safety issues. Therefore, real-time stuck-pipe predictions are an important tool to preempt this problem and avoid the aforementioned troubles. In this study, we have developed a prediction technique based on artificial intelligence, in collaboration with industry, the government, and academia. This technique was developed by combining an unsupervised learning model built using an encoder-decoder, long short-term memory architecture, with a relative error function. The model was trained with the time series data of normal drilling operations and based on an important hypothesis: reconstruction errors between observed and predicted values are higher around the time of pipe sticking than during normal drilling operations. An evaluation method of stuck-pipe possibilities using a relative error function reduced false predictors caused by large variations of drilling parameters. The prediction technique was then applied to 34 actual stuck-pipe events, where it was found that reconstruction errors calculated with the relative error function increased 0.5-10 hours prior to the pipe sticking for 17 out of 34 stuck-pipe events (thereby partly confirming our hypothesis).
An Accelerated competency development is one of the essential factors to achieve and sustain the medium-to long-term vision of INPEX. After intensive reviews and discussions, a skillmap based development approach had been selected and implemented especially targeting young technical professionals to enhance the company's overall technical capabilities. This paper describes the key success factors of our Skillmap set-up approach and its implementation procedures.The internal discussion concluded that we required ЉownЉ style of competency development scheme rather than utilizing a 'ready-madeЉ scheme or contracting out. Three key points of our approach are highlighted as follows.1. Job matrix and skill matrix: Two matrixes were created to evaluate the work experiences and technical capabilities respectively for the optimum development plan. 2. A face-to-face approach: This is our core approach of communication, to build strong relationship between young and senior professionals. 3. A dedicated competency development support team, so-called ЉSkillmap teamЉ, leads the entire process proactively.The approach was implemented nearly two years ago and over 150 young professionals have experienced the processes.
The early detection of a stuck pipe event is crucial as it is one of the major incidents resulting in nonproductive time. An ordinary supervised machine learning approach has been adopted to achieve the detection of stuck pipe in some previous studies. However, for early detection before stuck occurs with this approach, there are challenging issues such as limited stuck pipe data, various causes of stuck, and the lack of a prior exact "stuck sign" which should be a label in the training dataset. In this study, the surface drilling data is first collected from multiple agencies to enhance the training dataset. Subsequently, a supervised machine learning algorithm with ordinary binary classification methodologies, such as support vector machines and neural networks is adopted. The supervised machine learning approach presents good performance for stuck pipe event detection. However, it detects "stuck has already occurred", and it cannot effectively predict the stuck pipe because there is no exact sign for stuck pipe which is mandatory as label for training data. This study also adopts an unsupervised machine learning algorithm which employs architectures that include an autoencoder with long short-term memory, as well as a multiple prediction model to improve the expressiveness. The unsupervised machine learning process typically involves learning the features of normal activities, whereby the created model can represent only these activities. When stuck occurs or will occur, as such data are not represented by the created model, it should be detected. The performance of the early stuck pipe event detection using supervised and unsupervised machine learning approaches is analyzed, and the results demonstrate that the unsupervised machine learning approach presents a better early stuck pipe detection capability. The proposed machine learning algorithm will be further improved in the future and the prediction result will be validated through actual operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.