Somatic mutation of ten-eleven translocation 2 (TET2) gene is frequently found in human myeloid malignancies. Recent reports showed that loss of Tet2 led to pleiotropic hematopoietic abnormalities including increased competitive repopulating capacity of bone marrow (BM) HSCs and myeloid transformation. However, precise impact of Tet2 loss on the function of fetal liver (FL) HSCs has not been examined. Here we show that disruption of Tet2 results in the expansion of Lin−Sca-1+c-Kit+ (LSK) cells in FL. Furthermore, Tet2 loss led to enhanced self-renewal and long-term repopulating capacity of FL-HSCs in in vivo serial transplantation assay. Disruption of Tet2 in FL also led to altered differentiation of mature blood cells, expansion of common myeloid progenitors and increased resistance for hematopoietic progenitor cells (HPCs) to differentiation stimuli in vitro. These results demonstrate that Tet2 plays a critical role in homeostasis of HSCs and HPCs not only in the BM, but also in FL.
Somatic mutation of RUNX1 is implicated in various hematological malignancies, including myelodysplastic syndrome and acute myeloid leukemia (AML), and previous studies using mouse models disclosed its critical roles in hematopoiesis. However, the role of RUNX1 in human hematopoiesis has never been tested in experimental settings. Familial platelet disorder (FPD)/AML is an autosomal dominant disorder caused by germline mutation of RUNX1, marked by thrombocytopenia and propensity to acute leukemia. To investigate the physiological function of RUNX1 in human hematopoiesis and pathophysiology of FPD/AML, we derived induced pluripotent stem cells (iPSCs) from three distinct FPD/AML pedigrees (FPD-iPSCs) and examined their defects in hematopoietic differentiation. By in vitro differentiation assays, FPD-iPSCs were clearly defective in the emergence of hematopoietic progenitors and differentiation of megakaryocytes, and overexpression of wild-type (WT)-RUNX1 reversed most of these phenotypes. We further demonstrated that overexpression of mutant-RUNX1 in WT-iPSCs did not recapitulate the phenotype of FPD-iPSCs, showing that the mutations were of loss-of-function type. Taken together, this study demonstrated that haploinsufficient RUNX1 allele imposed cell-intrinsic defects on hematopoietic differentiation in human experimental settings and revealed differential impacts of RUNX1 dosage on human and murine megakaryopoiesis. FPD-iPSCs will be a useful tool to investigate mutant RUNX1-mediated molecular processes in hematopoiesis and leukemogenesis.
The ex vivo expansion of human hematopoietic stem/progenitor cells (HSPCs) has important applications in both basic research and clinical transplantation therapy. Here, we introduce the protocol of a novel culture system that supports the long-term ex vivo expansion of human HSPCs, achieved through the complete replacement of cytokines and albumin by chemical agonists and a caprolactambased polymer. A phosphoinositide 3-kinase activator in combination with a thrombopoietin receptor agonist and the pyrimidoindole derivative UM171 were su cient to stimulate functional expansion of umbilical cord blood-derived HSCs. We envision that this chemically de ned expansion culture system will help to advance clinical HSC therapies.
BackgroundLate-onset noninfectious pulmonary complications (LONIPCs), which occur more than 3 months after allogeneic hematopoietic stem cell transplantation (HSCT), are major causes of morbidity and mortality after transplantation. Among LONIPCs, we occasionally treat patients with late-onset severe restrictive lung defect after HSCT; however, its clinical features have not been fully elucidated.MethodsA retrospective chart review of a single center on cases of late-onset severe restrictive lung defect after HSCT was performed. Among 453 patients who survived longer than 100 days after allogeneic HSCT with evaluable spirometry data, 12 patients (2.6%) developed late-onset severe restrictive lung defect (i.e., vital capacity percent of predicted less than 60%).ResultsMedian duration from transplantation to diagnosis of late-onset severe restrictive lung defect cases was 44.5 months. Major computed tomography (CT) finding was pleuroparenchymal thickening with volume loss, an evidence of fibrosis, predominantly in upper lobes (n = 7), which was consistent with pleuroparenchymal fibroelastosis. The remaining patients showed unclassifiable interstitial pneumonia pattern (n = 2) and airway-predominant pattern (n = 3). The diffusing capacity for carbon oxide tended to decrease, while the residual volume/total lung capacity ratio tended to increase after HSCT. Of 12 patients, 8 patients died and the median month from diagnosis to death was 33.5 months. Seven patients died of pulmonary or systemic infection, and one patient died due to relapse of the primary disease.ConclusionSevere restrictive lung defect could develop in selected cases in the late-phase after HSCT and could be a unique clinical entity with specific radiographical findings.Electronic supplementary materialThe online version of this article (10.1186/s12890-017-0466-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.