The globally connected active rotators with excitatory and inhibitory connections are analyzed using the nonlinear Fokker-Planck equation. The bifurcation diagram of the system is obtained numerically, and both periodic solutions and chaotic solutions are found. By observing the interspike interval, the coefficient of variance, and the correlation coefficient of the system, the relationship of our model to the biological data is discussed.
Until recently it was thought that the volcanoes of the Mariana island arc of the western Pacific terminated at Tracey Seamount at ∼ 14°N immediately west of Guam. Sea floor mapping in 1995 shows a series of large volcanic seamounts stretching westward for nearly 300 km beyond that point. The morphology, spacing, and composition of those sampled are consistent with their having formed as a consequence of eruption of suprasubduction zone arc magmas. The relationships of the volcanoes to the tectonic processes of subduction of the Pacific plate beneath the southern portion of the Mariana convergent plate margin are becoming increasingly clear as new bathymetry and geochemical data are amassed. The volcanoes along this trend that lie closest to Guam are forming where the center of active extension in the back‐arc basin intersects the line of arc volcanoes. They develop well‐defined rifts that are parallel to rift structures along the extension center, whereas volcanoes of the spreading axis to the north are smaller than the frontal arc volcanoes and tend to form along lineaments. Compositions of lavas from these intersection volcanoes bear some similarities to back‐arc basin basalt, but are on the whole well within the range of compositions for Mariana island arc lavas. The Pacific plate subducts nearly orthogonal to the strike of the trench along the southern part of the Mariana system and the distance to the arc line from the trench axis is only ∼ 150 km. Several deep fault‐controlled canyons on the inner slope of the southern Mariana trench indicate an enhanced tectonic extension of this plate margin. The presence of these active arc volcanoes and the existence of the orthogonal normal faulting along the southern Mariana forearc supports a model of radial extension for formation of the Mariana Trough, a model previously dismissed because of the lack of evidence of these two major geological features.
Remote heart rate detection without body-attached probes is a promising technology for health care, monitoring of elderly people, emergency, and security. In this paper, we use a continuous wave (CW) microwave Doppler radar. It is important to eliminate the effect of body movement that is irrelevant to heartbeat such as respiration. In general, the displacements of them are larger than those of heartbeat. Therefore, we focus on the periodic variation of velocity of body movement due to heartbeat rather than the displacement variation of it. We detect a heart rate from a part of the wavelet frequency components with high periodicity. As a result of performance evaluation, our system enables to extract more accurate heartbeat interval than the traditional approach using the periodicity of an original Doppler signal.
Synchronized firings in the networks of class 1 excitable neurons with excitatory and inhibitory connections are investigated, and their dependences on the forms of interactions are analyzed. As the forms of interactions, we treat the double exponential coupling and the interactions derived from it: pulse coupling, exponential coupling, and alpha coupling. It is found that the bifurcation structure of the networks depends mainly on the decay time of the synaptic interaction and the effect of the rise time is smaller than that of the decay time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.