The US, MR, and dynamic MR findings in four patients with sclerosing stromal tumor of the ovary are reported. US showed a tumor with multilocular cystic components and irregularly thickened septa and tumor walls or a solid tumor including several small cystic components. On T2-weighted MR images, signal intensities of the cystic components were high and those of the solid components were inhomogeneous, ranging from intermediate-high to high. Dynamic MRI demonstrated marked early enhancement of the solid components.
A new tissue-equivalent MRI phantom based on carrageenan gel was developed. Carrageenan gel is an ideal solidifying agent for making large, strong phantoms in a wide variety of shapes. GdCl 3 was added as a T 1 modifier and agarose as a T 2 modifier. The relaxation times of a very large number of samples were estimated using 1.5-T clinical MRI equipment. The developed phantom was found to have a T 1 value of 202-1904 ms and a T 2 value of 38 -423 ms when the GdCl 3 concentration was varied from 0 -140 mol/kg and the agarose concentration was varied from 0 -1.6% in a carrageenan concentration that was fixed at 3%. The range of measured relaxation times covered those of all types of human tissue. Empirical formulas linking the relaxation time with the concentration of the modifier were established to enable the accurate and easy calculation of the modifier concentration needed to achieve the required relaxation times. This enables the creation of a phantom having an arbitrary combination of MRI phantoms are useful for calibrating and checking imaging equipment, developing new systems and pulse sequences, and training MRI operators. To be useful in these roles, the material used to make MRI phantoms should 1) have relaxation times similar to those of human tissue; 2) provide uniform relaxation times throughout the phantom itself; 3) be strong enough to enable the fabrication of a "torso" without the use of physical reinforcements; 4) allow the production of phantoms in the shapes and sizes of human organs; 5) be easy to handle; and, 6) remain chemically and physically stable over extended periods.There have been several attempts to create solid materials for MRI phantoms. Former candidates have included agarose (1-5), agar (6,7), polyvinyl alcohol (PVA) (8), gelatin (9,10), TX-150 (11), TX-151 (12), and polyacrylamide (13). These gel phantoms usually contained additives such as paramagnetic ions to control the T 1 relaxation times. The most versatile phantoms are probably the paramagnetically doped gels that are based on agarose (1-5) or agar (6,7). In these systems, the T 1 relaxation times can be easily modulated by varying the concentrations of the paramagnetic ions, whereas the T 2 relaxation times are primarily a function of the gelling agent concentration. In a phantom that is based on polyacrylamide gel (13), both the T 1 and T 2 relaxation times can be modulated simultaneously by varying the concentration of the gel without the paramagnetic ions. These phantoms are easy to prepare and can be made with a wide range of T 1 and T 2 relaxation times including those of human tissue. To create a phantom with a human-like T 2 relaxation time of about 40 -150 ms, however, the concentration of agar, agarose, and polyacrylamide must be about 1.5-3.0, 0.8 -4.0, and 17-30%, respectively. To create a phantom having a long T 2 relaxation time, the concentration would be so low that the gel would not solidify sufficiently. A PVA gel phantom can offer the appropriate physical characteristics because it is as hard as the st...
The authors developed a phantom, designated as the CAGN phantom, compatible for MRI and hyperthermia that is useful in the fundamental studies of non-invasive MR thermometry. The ingredients of this phantom are carrageenan, GdCl3 as a T1 modifier, agarose as a T2 modifier, NaCl as a conductivity modifier, NaN3 as an antiseptic and distilled water. Another phantom that was developed, the CAG phantom, has relaxation times that are adjustable to those of any human tissue. To use this phantom for electromagnetic heating, NaCl was added to change the conductivity of the phantom and clarified the relationship between the conductivity and NaCl concentration. This study examined the relationship between relaxation times and NaCl concentration of the CAGN phantom. The results showed that both T1 and T2 values were affected by NaCl and the experimental results led to the empirical formulae expressing the relationship between the relaxation rates (1/T1, 1/T2) and the concentrations of GdCl3, agarose and NaCl. The appropriate concentrations of T1 and T2 modifiers were calculated from these empirical formulae when making a specified phantom that has the required relaxation times and NaCl concentration.
A phantom has previously been developed containing carrageenan, agarose and gadolinium chloride (called CAG phantom) for MRI with 1.5 T. T(1) and T(2) relaxation times of this phantom are independently changeable by varying concentrations of relaxation-time modifiers to simulate relaxation times of the various types of human tissues. The CAG phantom has a T(1) value of 202-1904 ms and a T(2) value of 38-423 ms, when the GdCl(3) concentration is varied from 0-140 micromol/kg and the agarose concentration is varied from 0-1.6%. A new phantom has now been developed (called CAGN phantom), made by adding an electric conductive agent, NaCl, to the CAG phantom for use in the areas of MRI and hyperthermia research. Dielectric properties of the CAGN phantom were measured and the results of experiments were expressed by the Cole-Cole equation in the frequency range of 5-130 MHz. The relationship between the conductivity of the CAGN phantom and the concentration of NaCl was expressed by a linear function in the frequency range of 1-130 MHz. The linear function involves a parameter of frequency and, when the frequency is 10 MHz, the conductivity of the CAGN phantom can be changed from 0.27-1.26 Sm(-1) by increasing the NaCl concentration from 0-0.7%. The CAGN phantom developed can be employed in basic experiments for non-invasive temperature measurement using MRI and as a loading phantom for MRI with up to 3 T.
Unilateral portal venous flow decrease is suspected to be a major factor in the discrepancy between hepatectomy simulations with radionuclide receptor imaging and CT volumetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.