Carbon aerogel derived from a modified resorcinol-formaldehyde (RF) method without supercritical drying step was activated under CO 2 flow and further modified with a surfactant sodium oleate solution. Carbon aerogel, activated carbon aerogel (ACA) and modified activated carbon aerogel (MACA) were characterized by Brunaver, Emmett and Teller(BET) surface measurement, constant-current charge-discharge and cyclic voltammetry(CV). It was found that the specific surface area of the ACA was twice that without activation. At relatively low discharge rates the specific capacitance and energy delivered from the capacitor were improved greatly by the activation of carbon aerogel. To apply the ACA at high discharge rate, a surface modification was introduced. After the surface modification the wettability of the organic electrolyte based on non-polar organic solvent (i.e. propylene carbonate) to the ACA was improved greatly and, as a result, the internal resistance of the capacitor decreased and the specific capacitance and energy delivered increased at all the test discharge rates. The effects from the modification become more marked at higher discharge rates, i.e. at 48 mA cm )2 , the energy delivered increased by ca. 70%, which indicates the MACA more suitable as electrode material in electric double-layer capacitors (EDLCs) for high current applications.
As a form of therapeutic angiogenesis, we sought to investigate the safety and efficacy of a sustained-release system of basic fibroblast growth factor (bFGF) using biodegradable gelatin hydrogel in patients with critical limb ischemia (CLI). We conducted a phase I-IIa study that analyzed 10 CLI patients following a 200-μg intramuscular injection of bFGF-incorporated gelatin hydrogel microspheres into the ischemic limb. Primary endpoints were safety and transcutaneous oxygen pressure (TcO2) at 4 and 24 weeks after treatment. During the follow-up, there was no death or serious procedure-related adverse event. After 24 weeks, TcO2 (28.4 ± 8.4 vs. 46.2 ± 13.0 mmHg for pretreatment vs after 24 weeks, p < 0.01) showed significant improvement. Regarding secondary endpoints, the distance walked in 6 min (255 ± 105 vs. 318 ± 127 m, p = 0.02), the Rutherford classification (4.4 ± 0.5 vs. 3.1 ± 1.4, p = 0.02), the rest pain scale (1.7 ± 1.0 vs. 1.2 ± 1.3, p = 0.03), and the cyanotic scale (2.0 ± 1.1 vs. 0.9 ± 0.9, p < 0.01) also showed improvement. The blood levels of bFGF were within the normal range in all patients. A subanalysis of patients with arteriosclerosis obliterans (n = 7) or thromboangiitis obliterans (Buerger's disease) (n = 3) revealed that TcO2 had significantly improved in both subgroups. TcO2 did not differ between patients with or without chronic kidney disease. The sustained release of bFGF from biodegradable gelatin hydrogel may offer a safe and effective form of angiogenesis for patients with CLI.
Data mining from published papers can generate large experimental datasets that have been overlooked in computational materials informatics. We developed an open web system Starrydata2 to accelerate a comprehensive digitization of data of materials from as-reported plot images in published papers, without sample selection based on performance. By plotting results obtained from our dataset on experimental thermoelectric properties of 434 samples of rock-salt-type (PbTe-type) thermoelectric materials, we revealed differences in electronic structure of parent compounds PbTe, PbSe, PbS, and SnTe from just experimental data. We observed that the calculated Seebeck coefficients were fairly consistent with experimental data for n-type PbTe but not for p-type PbTe, indicating possible modifications in its valenceband electronic structure. We evaluated the electron relaxation time τ el from 207 reported samples of n-type PbTe by combining calculations and experimental data. We found that τ el is not a constant but varies by at least two orders of magnitude. Achieving long τ el was suggested to be critical in increasing the thermoelectric figure of merit ZT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.