Although cross-sectional and longitudinal studies report a relationship between osteoporosis and cardiovascular disorders (known as the bone-cardiovascular axis), the benefits of osteoporosis treatment on atherosclerosis are largely unclear. Teriparatide is a bone-forming agent that increases urinary phosphate excretion. Because elevated serum phosphate is associated with the development of atherosclerosis, the purpose of our study was to examine the relationship among lumbar spine bone mineral density (LS-BMD), intima-media thickness at the carotid artery (CA-IMT), and phosphate metabolism in response to daily teriparatide therapy. Osteoporotic patients (n = 28) with low LS-BMD (T-score < -2.5) and/or at least one vertebral fracture were treated with teriparatide (20 μg/day) for 12 months. Metabolic bone markers, LS-BMD, and CA-IMT were measured over the course of treatment. The LS-BMD significantly increased by 0.046 ± 0.038 g/cm(2) over the 12-month period (P < 0.001). CA-IMT decreased from 0.701 mm (interquartile range: 0.655-0.774 mm) at baseline to 0.525 mm (0.477-0.670 mm) at 12 months (P < 0.05); however, CA-IMT change was not significantly associated with LS-BMD change. Serum phosphate decreased after 1 month of teriparatide administration, and the change in serum phosphate at 1 months was associated with the change in CA-IMT at 12 months (ρ = 0.431, P = 0.025). Teriparatide improved LS-BMD and CA-IMT, suggesting the existence of the bone-cardiovascular axis. The association between serum phosphate and CA-IMT suggests that the teriparatide decreased CA-IMT in part by reducing serum phosphate, a well-known vascular toxin, in addition to the improvement of bone-cardiovascular axis.
Both low eGFR and high bone turnover were independent risk factors for denosumab-induced cCa decrement, and for increases in BMD. Pretreatment with antiresorptive agents may reduce the risk of hypocalcemia.
Higher serum phosphorus (Pi) increases the risk for chronic kidney disease (CKD). It was reported that a single administration of denosumab or zoledronate significantly suppressed serum Pi levels as well as those of bone resorption markers in serum. Also, previous evidences suggest a link between bone anti‐resorptive therapy and vasoprotective/renoprotective effects through mechanisms that remain unexplored. The aim of this study is to assess the renoprotective effect of denosumab and involvement of denosumab‐induced reduction in serum Pi in osteoporotic patients. Osteoporotic patients (n = 73) without overt proteinuria in dipstick test results were treated with denosumab (60 mg) every 6 months during the study period (24 months). Estimated glomerular filtration rate based on serum cystatin C (eGFRcys) was used as a filtration marker and tartrate‐resistant acid phosphatase‐5b (TRACP‐5b) as a bone resorption marker. For analysis of non‐CKD patients (n = 56), those with eGFRcys <60 mL/min/1.73 m2 were excluded. A single injection of denosumab suppressed serum Pi as well as TRACP‐5b during the first 6 months, whereas age‐related decline in eGFRcys was significantly reversed, with an increase of 2.75 ± 1.2 mL/min/1.73 m2 after 24 months noted. Multivariate analysis showed that serum Pi reduction following the initial denosumab injection was positively associated with serum TRACP‐5b suppression during that same period (β = 0.241, p = 0.049). In addition, a positive association of serum Pi suppression, but not of corrected calcium or TRACP‐5b, with eGFRcys increase after 24 months (β = 0.321, p = 0.014) was found after adjustments for gender, age, BMI, antihypertensive drug use, albumin, and eGFRcys. The same was observed in osteoporotic cases restricted to non‐CKD patients. In conclusion, serum Pi reduction resulting from phosphorus load decrement from bone induced by denosumab is a determinant for eGFRcys increase. Early introduction of bone antiresorptive therapy can retain glomerular filtration in osteoporosis cases, including non‐CKD patients. © 2019 American Society for Bone and Mineral Research.
The trabecular bone score (TBS) is a new surrogate for trabecular bone microarchitecture assessment, independent of bone mineral density (BMD), calculated from pixel gray-level variations in the lumbar spine (LS) dual-energy X-ray absorptiometry (DXA) image. Although Teriparatide (TPTD) increased LS-BMD as well as TBS in 2 years, the precise time-course of these parameters was not well known. The aim of this study was to determine the changes in LS-BMD and the TBS in osteoporotic patients treated with TPTD, followed by minodronate (MINO). Primary osteoporotic patients with a low LS-BMD (T-score < -2.5) and/or at least one vertebral fracture were treated with TPTD subcutaneously at 20 µg/day for 12-24 months, followed by MINO (orally at 50 mg/once monthly) for 12 months. LS-BMD and the TBS were measured at 0, 3, 6, 12, and 24 months after the initiation of TPTD treatment, and 12 months after the initiation of MINO. The increments of LS-BMD, significant at 6 months, increased until 12 months, whereas the increments of TBS, significant at 3 months (0.035 ± 0.011; p = 0.045 vs. the baseline), stabilized until 12 months. TPTD treatment, followed by 12 months of MINO, maintained both BMD and the TBS. Comparing the increments of the TBS to those of LS-BMD, our results indicate that TPTD treatment improved trabecular microarchitecture faster than mineralization. TPTD treatment, followed by MINO, can maintain both BMD and the TBS.
Paget's disease of bone (PDB) is a chronic disorder characterized by localized bone regions with excessive bone turnover. Although oral risedronate (17.5 mg daily for 8 weeks) was recently approved in Japan, its efficacy is not well understood. We retrospectively examined the efficacy of oral risedronate in PDB patients in a clinical setting. Eleven patients whose serum alkaline phosphatase (ALP) level exceeded the upper limit of the normal range were treated. Patients whose ALP levels normalized and remained so for 12 months after therapy initiation were defined as responders. Treatment was repeated if bone pain recurred or if serum ALP levels increased at least 25% above the nadir. Six patients (55%) were responsive to the therapy. A higher prevalence of skull lesions, higher serum calcium levels at treatment initiation and antecedent treatments of bisphosphonates were predictors of resistance against the therapy. Fresh frozen serum samples obtained from some treatment sessions were evaluated for metabolic bone markers such as bone-specific ALP (BAP), type I procollagen N-terminal pro-peptide (PINP), N-treminal crosslinking telopeptide of type I collagen and C-treminal crosslinking telopeptide of type I collagen (CTX). A significant reduction of P1NP preceded that of serum ALP levels in the responders, which was followed by a similar occurrence for BAP and osteocalcin (BGP) levels. A temporary decrease in CTX levels was noted. No significant changes in markers (including ALP level) were observed in non-responder and repeat-treatment groups. P1NP levels may be more useful than ALP levels in assessing treatment efficacy. Repeat treatment effectiveness for the repeat-treatment group was limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.