An active radio frequency identification (RFID) tag that can communicate with smartphones using Bluetooth low energy technology has recently received widespread attention. We have studied a novel approach to finding lost objects using active RFID. We hypothesize that users can deduce the location of a lost object from information about surrounding objects in an environment where RFID tags are attached to all personal belongings. To help find lost objects from the proximity between RFID tags, the system calculates the proximity between pairs of RFID tags from the RSSI series and estimates the groups of objects in the neighborhood. We developed a method for calculating the proximity of the lost object to those around it using a distance function between RSSI series and estimating the group by hierarchical clustering. There is no method to evaluate whether a combination is suitable for application purposes directly. Presently, different combinations of distance functions and clustering algorithms yield different clustering results. Thus, we propose the number of nearest neighbor candidates (NNNC) as the criterion to evaluate the clustering results. The simulation results show that the NNNC is an appropriate evaluation criterion for our system because it is able to exhaustively evaluate the combination of distance functions and clustering algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.