Background— Doxorubicin is a highly effective antineoplastic drug, but its clinical use is limited by its adverse side effects on the heart. We investigated possible protective effects of erythropoietin against doxorubicin-induced cardiomyopathy. Methods and Results— Cardiomyopathy was induced in mice by a single intraperitoneal injection of doxorubicin (15 mg/kg). In some cases, human recombinant erythropoietin (5000 U/kg) was started simultaneously. Two weeks later, left ventricular dilatation and dysfunction were apparent in mice given doxorubicin but were significantly attenuated by erythropoietin treatment. Erythropoietin also protected hearts against doxorubicin-induced cardiomyocyte atrophy and degeneration, myocardial fibrosis, inflammatory cell infiltration, and downregulation of expression of GATA-4 and 3 sarcomeric proteins, myosin heavy chain, troponin I, and desmin. Cyclooxygenase-2 expression was upregulated in doxorubicin-treated hearts, and that, too, was attenuated by erythropoietin. No doxorubicin-induced apoptotic effects were seen, nor were any changes seen in the expression of tumor necrosis factor-α or transforming growth factor-β1. Antiatrophic and GATA-4 restoring effects of erythropoietin were demonstrated in the in vitro experiments with cultured cardiomyocytes exposed to doxorubicin, which indicated the direct cardioprotective effects of erythropoietin beyond erythropoiesis. Cardiac erythropoietin receptor expression was downregulated in doxorubicin-induced cardiomyopathy but was restored by erythropoietin. Among the downstream mediators of erythropoietin receptor signaling, activation of extracellular signal-regulated kinase was reduced by doxorubicin but restored by erythropoietin. By contrast, erythropoietin was ineffective when administered after cardiac dysfunction was established in the chronic stage. Conclusions— The present study indicates a protective effect of erythropoietin against doxorubicin-induced cardiomyopathy.
Background— Fibrosis and progressive failure are prominent pathophysiological features of hearts after myocardial infarction (MI). We examined the effects of inhibiting transforming growth factor-β (TGF-β) signaling on post-MI cardiac fibrosis and ventricular remodeling and function. Methods and Results— MI was induced in mice by left coronary artery ligation. An adenovirus harboring soluble TGF-β type II receptor (Ad.CAG-sTβRII), a competitive inhibitor of TGF-β, was then injected into the hindlimb muscles on day 3 after MI (control, Ad.CAG-LacZ). Post-MI survival was significantly improved among sTβRII-treated mice (96% versus control at 71%), which also showed a significant attenuation of ventricular dilatation and improved function 4 weeks after MI. At the same time, histological analysis showed reduced fibrous tissue formation. Although MI size did not differ in the 2 groups, MI thickness was greater and circumference was smaller in the sTβRII-treated group; within the infarcted area, α-smooth muscle actin–positive cells were abundant, which might have contributed to infarct contraction. Apoptosis among myofibroblasts in granulation tissue during the subacute stage (10 days after MI) was less frequent in the sTβRII-treated group, and sTβRII directly inhibited Fas-induced apoptosis in cultured myofibroblasts. Finally, treatment of MI-bearing mice with sTβRII was ineffective if started during the chronic stage (4 weeks after MI). Conclusions— Postinfarction gene therapy aimed at suppressing TGF-β signaling mitigates cardiac remodeling by affecting cardiac fibrosis and infarct tissue dynamics (apoptosis inhibition and infarct contraction). This suggests that such therapy may represent a new approach to the treatment of post-MI heart failure, applicable during the subacute stage.
Abstract-In myocardial infarction (MI), granulation tissue cells disappear via apoptosis to complete a final scarring with scanty cells. Blockade of this apoptosis was reported to improve post-MI ventricular remodeling and heart failure. However, the molecular biological mechanisms for the apoptosis are unknown. Fas and Fas ligand were overexpressed in the granulation tissue at the subacute stage of MI (1 week after MI) in mice, where apoptosis frequently occurred. In mice lacking functioning Fas (lpr strain) and in those lacking Fas ligand (gld strain), apoptotic rate of granulation tissue cells was significantly fewer compared with that of genetically controlled mice, and post-MI ventricular remodeling and dysfunction were greatly attenuated. Mice were transfected with adenovirus encoding soluble Fas (sFas), a competitive inhibitor of Fas ligand, on the third day of MI. The treatment resulted in suppression of granulation tissue cell apoptosis and produced a thick, cell-rich infarct scar containing rich vessels and bundles of smooth muscle cells with a contractile phenotype at the chronic stage (4 weeks after MI). This accompanied not only alleviation of heart failure but also survival improvement. However, the sFas gene delivery during scar tissue phase was ineffective, suggesting that beneficial effects of the sFas gene therapy owes to inhibition of granulation tissue cell apoptosis. The Fas/Fas ligand interaction plays a critical role for granulation tissue cell apoptosis after MI. Blockade of this apoptosis by interfering with the Fas/Fas ligand interaction may become one of the therapeutic strategies against chronic heart failure after large MI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.