Abbreviations: AMPK, AMP-activated protein kinase; CTSD, cathepsin D; DM, diabetes mellitus; GFP, green fluorescent protein; HBA1c, glycated hemoglobin a 1; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; LV, left ventricular; MTOR, mechanistic target of rapamycin; SIRT1, sirtuin 1; Mn-SOD, superoxide dismutase 2, mitochondrial; STZ, streptozotocin; SQSTM1/p62, sequestosome 1.Little is known about the association between autophagy and diabetic cardiomyopathy. Also unknown are possible distinguishing features of cardiac autophagy in type 1 and type 2 diabetes. In hearts from streptozotocin-induced type 1 diabetic mice, diastolic function was impaired, though autophagic activity was significantly increased, as evidenced by increases in microtubule-associated protein 1 light chain 3/LC3 and LC3-II/-I ratios, SQSTM1/p62 (sequestosome 1) and CTSD (cathepsin D), and by the abundance of autophagic vacuoles and lysosomes detected electronmicroscopically. AMP-activated protein kinase (AMPK) was activated and ATP content was reduced in type 1 diabetic hearts. Treatment with chloroquine, an autophagy inhibitor, worsened cardiac performance in type 1 diabetes. In addition, hearts from db/db type 2 diabetic model mice exhibited poorer diastolic function than control hearts from db/C mice. However, levels of LC3-II, SQSTM1 and phosphorylated MTOR (mechanistic target of rapamycin) were increased, but CTSD was decreased and very few lysosomes were detected ultrastructurally, despite the abundance of autophagic vacuoles. AMPK activity was suppressed and ATP content was reduced in type 2 diabetic hearts. These findings suggest the autophagic process is suppressed at the final digestion step in type 2 diabetic hearts. Resveratrol, an autophagy enhancer, mitigated diastolic dysfunction, while chloroquine had the opposite effects in type 2 diabetic hearts. Autophagy in the heart is enhanced in type 1 diabetes, but is suppressed in type 2 diabetes. This difference provides important insight into the pathophysiology of diabetic cardiomyopathy, which is essential for the development of new treatment strategies.
Integrins are heterodimeric, transmembrane receptors that are expressed in all cells, including those in the heart. They participate in multiple critical cellular processes including adhesion, extracellular matrix organization, signaling, survival, and proliferation. Particularly relevant for a contracting muscle cell, integrins are mechanotransducers, translating mechanical to biochemical information. While it is likely that cardiovascular clinicians and scientists have highest recognition of integrins in the cardiovascular system from drugs used to inhibit platelet aggregation, the focus of this article will be on the role of integrins specifically in the cardiac myocyte. Following a general introduction to integrin biology, the manuscript will discuss important work on integrin signaling, mechanotransduction, and lessons learned about integrin function from a range of model organisms. Then we will detail work on integrin-related proteins in the myocyte, how integrins may interact with ion channels and mediate viral uptake into cells, and also play a role in stem cell biology. Finally, we will discuss directions for future study.
Endothelial glycocalyx coats healthy vascular endothelium and plays an important role in vascular homeostasis. Although cerebral capillaries are categorized as continuous, as are those in the heart and lung, they likely have specific features related to their function in the blood brain barrier. To test that idea, brains, hearts and lungs from C57BL6 mice were processed with lanthanum-containing alkaline fixative, which preserves the structure of glycocalyx, and examined using scanning and transmission electron microscopy. We found that endothelial glycocalyx is present over the entire luminal surface of cerebral capillaries. The percent area physically covered by glycocalyx within the lumen of cerebral capillaries was 40.1 ± 4.5%, which is significantly more than in cardiac and pulmonary capillaries (15.1 ± 3.7% and 3.7 ± 0.3%, respectively). Upon lipopolysaccharide-induced vascular injury, the endothelial glycocalyx was reduced within cerebral capillaries, but substantial amounts remained. By contrast, cardiac and pulmonary capillaries became nearly devoid of glycocalyx. These findings suggest the denser structure of glycocalyx in the brain is associated with endothelial protection and may be an important component of the blood brain barrier.
Background— Doxorubicin is a highly effective antineoplastic drug, but its clinical use is limited by its adverse side effects on the heart. We investigated possible protective effects of erythropoietin against doxorubicin-induced cardiomyopathy. Methods and Results— Cardiomyopathy was induced in mice by a single intraperitoneal injection of doxorubicin (15 mg/kg). In some cases, human recombinant erythropoietin (5000 U/kg) was started simultaneously. Two weeks later, left ventricular dilatation and dysfunction were apparent in mice given doxorubicin but were significantly attenuated by erythropoietin treatment. Erythropoietin also protected hearts against doxorubicin-induced cardiomyocyte atrophy and degeneration, myocardial fibrosis, inflammatory cell infiltration, and downregulation of expression of GATA-4 and 3 sarcomeric proteins, myosin heavy chain, troponin I, and desmin. Cyclooxygenase-2 expression was upregulated in doxorubicin-treated hearts, and that, too, was attenuated by erythropoietin. No doxorubicin-induced apoptotic effects were seen, nor were any changes seen in the expression of tumor necrosis factor-α or transforming growth factor-β1. Antiatrophic and GATA-4 restoring effects of erythropoietin were demonstrated in the in vitro experiments with cultured cardiomyocytes exposed to doxorubicin, which indicated the direct cardioprotective effects of erythropoietin beyond erythropoiesis. Cardiac erythropoietin receptor expression was downregulated in doxorubicin-induced cardiomyopathy but was restored by erythropoietin. Among the downstream mediators of erythropoietin receptor signaling, activation of extracellular signal-regulated kinase was reduced by doxorubicin but restored by erythropoietin. By contrast, erythropoietin was ineffective when administered after cardiac dysfunction was established in the chronic stage. Conclusions— The present study indicates a protective effect of erythropoietin against doxorubicin-induced cardiomyopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.