Changes in the electronic states for Ba1-xKxBiO3- delta ( delta =0 and 0.5) due to various surface treatments (fracturing, scraping and ion sputtering) have been studied by X-ray photoelectron spectroscopy. It is found that marked spectral changes occur as a result of scraping and sputtering; the core levels are broadened and the intensity at the top of the valence bands is reduced. These results are discussed in terms of the reduction of elements and damage in the surface region. The above results cause the authors to conclude that fracturing these samples is suitable as a cleaning procedure for this system. The Bi 4f, Ba 4d and O 1s core levels have very low binding energies and are shifted by 0.2-0.4 eV to lower binding energies on 50% substitution of K for Ba. The Bi 4f line seems to contain a single chemical state for BaBiO3- delta , and more than one chemical state for Ba0.5K0.5BiO3- delta . The top of the valence band is found to be 0.5 eV below the Fermi level for BaBiO3- delta , while a clear Fermi edge appears for the K-doped material in the valence band spectra from both X-ray and ultraviolet photoelectron spectroscopy. The electronic states of BaBiO3- delta and K doping effects are discussed and compared with band calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.