Acute kidney injury stimulates renal production of inflammatory mediators, including TNF-␣ and monocyte chemoattractant protein 1 (MCP-1). These responses reflect, in part, injury-induced transcription of proinflammatory genes by proximal tubule cells. Because of the compact structure of chromatin, a series of events at specified loci remodel chromatin to provide access for transcription factors and RNA polymerase II (Pol II). Here, we examined the role of Brahma-related gene-1 (BRG1), a chromatin remodeling enzyme, in the transcription of TNF-␣ and MCP-1 in response to renal ischemia. Two hours after renal ischemic injury in mice, renal TNF-␣ and MCP-1 mRNA increased and remained elevated for at least 1 wk. Matrix chromatin immunoprecipitation assays revealed sustained increases in Pol II at these genes, suggesting that the elevated mRNA levels were, at least in part, transcriptionally mediated. The profile of BGR1 binding to the genes encoding TNF-␣ and MCP-1 resembled Pol II recruitment. Knockdown of BRG1 by small interfering RNA blocked an ATP depletion-induced increase in TNF-␣ and MCP-1 transcription in a human proximal tubule cell line; this effect was associated with decreased recruitment of BRG1 and Pol II to these genes. In conclusion, BRG1 promotes increased transcription of TNF-␣ and MCP-1 by the proximal tubule in response to renal ischemia.
Acute renal failure (ARF) sensitizes the kidney to endotoxin (LPS)-driven production of cytokines and chemokines. This study assessed whether this LPS hyperresponsiveness exists at the genomic level. Three heterogeneous mouse models of ARF were studied: Maleate nephrotoxicity, unilateral ureteral obstruction, and LPS preconditioning. In all cases, LPS was injected approximately 18 h after injury was induced, and over the next 0 to 90 min, RNA polymerase II recruitment to the genome at three LPS-responsive genes (TNF-␣, monocyte chemoattractant-1 [MCP-1], and heme oxygenase-1 [HO-1]) was assessed by chromatin immunoprecipitation. LPS hyperresponsiveness was noted in each model, measured by exaggerated increases in TNF-␣ and MCP-1 mRNA (approximately two to 10 times higher than LPS-injected controls). Corresponding increases in the recruitment of RNA polymerase II to the TNF-␣ and MCP-1 genes were observed, and increased trimethylation of histone 3 lysine 4 (H3K4m3) at these sites may have played a role in this recruitment. Conversely, recruitment of RNA polymerase II to the HO-1 gene was suppressed ("tolerance"), and no increase in H3K4m3 was observed at HO-1 exons. The ARF-induced changes in mRNA did not correlate with mRNA stability, suggesting the mechanistic importance of RNA polymerase II-mediated transcriptional events. In conclusion, LPS hyperresponsiveness after ARF is likely mediated at the genomic level, possibly by H3K4m3.
Maleate injection causes dose-dependent injury in proximal tubular cells. This study sought to better define underlying pathogenic mechanisms and to test whether maleate toxicity recapitulates critical components of the hypoxic/ischemic renal injury cascade. CD-1 mice were injected with maleate or used as a source for proximal tubule segments (PTS) for in vitro studies. Maleate induced dose-dependent PTS injury [lactate deydrogenase (LDH) release, ATP reductions, nonesterified fatty acid (NEFA) accumulation]. These changes were partially dependent on maleate metabolism (protection conferred by metabolic inhibitors: succinate, acetoacetate). Maleate toxicity reproduced critical characteristics of the hypoxia/ATP depletion-induced injury cascade: 1) glutathione (GSH) conferred protection, but due to its glycine, not cysteine (antioxidant), content; 2) ATP reductions reflected decreased production, not Na-K-ATPase-driven increased consumption; 3) cell death was completely blocked by extracellular acidosis (pH 6.6); 4) intracellular Ca2+ chelation (BAPTA) mitigated cell death; 5) maleate and hypoxia each caused plasma membrane cholesterol shedding and in both instances, this was completely glycine suppressible; 6) maleate + hypoxia caused neither additive NEFA accumulation nor LDH release, implying shared pathogenic pathways; and 7) maleate, like ischemia, induced renal cortical cholesterol loading; increased HMG CoA reductase (HMGCR) activity (statin inhibitable), increased HMGCR mRNA levels, and increased RNA polymerase II recruitment to the HMGCR locus (chromatin immunoprecipitation, ChIP, assay) were involved. These results further define critical determinants of maleate nephrotoxicity and suggest that it can serve as a useful adjunct for studies of ischemia/ATP depletion-induced, proximal tubule-specific, cell death.
Background: Angiotensin-converting enzyme (ACE) inhibitors have been reported to reduce the response to erythropoietin (EPO) administration in chronic hemodialysis patients, but the mechanism for this effect has not yet been clarified. To clarify the mechanism of ACE inhibitors- and angiotensin II type 1 (AT1) receptor antagonist-induced anemia in hemodialysis patients, we examined the effect of ACE inhibitors and AT1 receptor antagonist on burst-forming units-erythroid (BFU-E) in the peripheral blood of hemodialysis patients and healthy controls in vitro. Methods: Peripheral blood mononuclear cells (PBMNCs) were isolated by gradient centrifugation from 10 patients on regular hemodialysis and 7 healthy control volunteers. A colony assay of hematopoietic progenitors was performed using the methylcellulose culture system. PBMNCs of 1 or 2 × 105 were plated in a medium containing EPO with various concentrations of ACE inhibitors or AT1 receptor antagonist and incubated for 14 days. Colonies of BFU-E were counted under an inverted microscope. Results: The PBMNCs from the chronic hemodialysis patients formed fewer BFU-Es than those from healthy volunteers. AT1 receptor antagonist in both healthy volunteers and hemodialysis patients suppressed the number of BFU-Es. The ACE inhibitors produced a smaller effect than the AT1 receptor antagonist. Conclusion: AT1 receptor blockade can directly inhibit erythropoiesis in vitro.
Acute kidney injury evokes renal tubular cholesterol synthesis. However, the factors during acute kidney injury that regulate HMG CoA reductase (HMGCR) activity, the rate-limiting step in cholesterol synthesis, have not been defined. To investigate these factors, mice were subjected to 30 minutes of either unilateral renal ischemia or sham surgery. After 3 days, bilateral nephrectomy was performed and cortical tissue extracts were prepared. The recruitment of RNA polymerase II (Pol II), transcription factors (SREBP-1, SREBP-2, NF-B, c-Fos, and c-Jun), and heat shock proteins (HSP-70 and heme oxygenase-1) to the HMGCR promoter and transcription region (start/ end exons) were assessed by Matrix ChIP assay. HMGCR mRNA, protein, and cholesterol levels were determined. Finally, histone modifications at HMGCR were assessed. Ischemia/reperfusion (I/R) induced marked cholesterol loading, which corresponded with elevated Pol II recruitment to HMGCR and increased expression levels of both HMGCR protein and mRNA. I/R also induced the binding of multiple transcription factors (SREBP-1, SREBP-2, c-Fos, c-Jun, NF-B) and heat shock proteins to the HMGCR promoter and transcription regions. Significant histone modifications (increased H3K4m3, H3K19Ac, and H2A.Z variant) at these loci were also observed but were not identified at either the 5 and 3 HMGCR flanking regions (؎5000 bps) or at negative control genes (-actin and -globin). In conclusion, I/R activates the HMGCR gene via multiple stress-activated transcriptional and epigenetic pathways, contributing to renal cholesterol loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.