We succeeded in rescuing infectious influenza virus by transfecting cells with RNAs derived from specific recombinant DNAs. RNA corresponding to the neuraminidase (NA) gene of influenza A/WSN/33 (WSN) virus was transcribed in vitro from plasmid DNA and, following the addition of purified influenza virus RNA polymerase complex, was transfected into MDBK cells. Superinfection with helper virus lacking the WSN NA gene resulted in the release of virus containing the WSN NA gene. We then introduced five point mutations into the WSN NA gene by cassette mutagenesis of the plasmid DNA. Sequence analysis of the rescued virus revealed that the genome contained all five mutations present in the mutated plasmid. The ability to create viruses with site-specific mutations will allow the engineering of influenza viruses with dermed biological properties.
Appropriate RNAs are transcribed and amplified and proteins are expressed after transfection into cells of in vitro-reconstituted RNA-protein complexes and infection with influenza virus as the helper. This system permits us to study the signals involved in transcription of influenza virus RNAs. For the analysis we used a plasmid-derived RNA containing the reporter gene for chloramphenicol acetyltransferase (CAT) flanked by the noncoding sequences of the NS RNA segment of influenza A/WSN/33 virus. Mutations were then introduced into both the 5' and 3' ends, and the resulting RNAs were studied to determine their transcription in vitro and their CAT expression activity in the RNA-protein transfection system. The results reveal that a stretch of uninterrupted uridines at the 5' end of the negative-strand RNA is essential for mRNA synthesis. Also, a double-stranded RNA "panhandle" structure generated by the 5'-and 3'-terminal nucleotides appears to be required for polyadenylation, since opening up of these base pairs diminished mRNA synthesis and eliminated expression of CAT activity by the mutant RNAs. Finally, it was shown that this double-stranded RNA structural requirement is not sequence specific, since a synthetic GC clamp can replace the virus-coded RNA duplex. The data suggest that the viral RNA polymerase adds poly(A) by a slippage (stuttering) mechanism which occurs when it hits the double-stranded RNA barrier next to the stretch of uridines.
Influenza A and B viruses have not been shown to form reassortants. It had been assumed that the lack of genotypic mixing between influenza virus types reflected differences in polymerase and packaging specificity. In this study, we show that an influenza A virus polymerase transcribes and replicates a chloramphenicol acetyltransferase (CAT) gene flanked by the nontranslated sequences of an influenza B virus gene. Although the transcription level of this CAT gene was several times lower than that of a CAT gene flanked by the homologous nontranslated sequences of an influenza A virus, we proceeded to construct a chimeric type A/B influenza virus. Using recombinant DNA techniques, a chimeric neuraminidase gene was introduced into the genome of influenza A/WSN/33 virus. The hybrid influenza A/B virus gene contained the coding region of the A/WSN neuraminidase and the 3' and 5' nontranslated sequences of the nonstructural gene of influenza B/Lee virus. The resulting chimeric virus formed plaques in Madin-Darby bovine kidney cells but replicated more slowly and achieved lower titers than wild-type influenza A/WSN/33 virus. The chimeric virus was attenuated for mice as indicated by a 400-fold increase in its LD50. Interestingly, the virus was greatly restricted in replication in the upper respiratory tract and partially restricted in the lungs. Animals infected with the transfectant virus were highly resistant to influenza virus challenge. It appears that this chimeric virus has many of the properties desirable for a live attenuated virus vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.