Waterbuck (Kobus defassa), an ungulate species endemic to the Eastern African savannah, is suspected of being a wildlife reservoir for tick-transmitted parasites infective to livestock. Waterbuck is infested by large numbers of Rhipicephalus appendiculatus, the tick vector for Theileria parva, and previous data suggests that the species may be a source of T. parva transmission to cattle. In the present study, a total of 86 cattle and 26 waterbuck blood samples were obtained from Marula, a site in Kenya endemic for East Coast fever (ECF) where the primary wildlife reservoir of T. parva the Cape buffalo (Syncerus caffer) is also common. To investigate for the presence of cattle-infective Theileria parasites, DNA specimens extracted from the blood samples were subjected to two diagnostic assays; a nested PCR based on the p104 gene that is specific for T. parva, and a reverse line blot (RLB) incorporating 13 oligonucleotide probes including all of the Theileria spp. so far described from livestock and wildlife in Kenya. Neither assay provided evidence of T. parva or Theileria sp. (buffalo) infection in the waterbuck DNA samples. By contrast, majority of the cattle samples (67.4%) were positive for T. parva using a nested PCR assay. The RLB assay, including a generic probe for the genus Theileria, indicated that 25/26 (96%) of the waterbuck samples were positive for Theileria, while none of the 11 Theileria species-specific probes hybridized with the waterbuck-derived PCR products. Phylogenetic analysis of 18S ribosomal RNA (18S rRNA) and internal transcribed spacer (ITS) sequences within the RLB-positive waterbuck samples revealed the occurrence of three Theileria genotypes of unknown identity designated A, B and C. Group A clustered with Theileria equi, a pathogenic Theileria species and a causative agent of equine piroplasmosis in domestic equids. However, DNA from this group failed to hybridize with the T. equi oligonucleotide present on the RLB filter probe, suggesting the occurrence of novel taxa in these animals. This was confirmed by DNA sequencing that revealed heterogeneity between the waterbuck isolates and previously reported T. equi genotypes. Group B parasites clustered closely with Theileria luwenshuni, a highly pathogenic parasite of sheep and goats reported from China. Group C was closely related to Theileria ovis, an apparently benign parasite of sheep. Together, these findings provided no evidence that waterbuck plays a role in the transmission of T. parva. However, novel Theileria genotypes detected in this bovid species may be of veterinary importance.
Poultry red mites (PRMs, Dermanyssus gallinae) are ectoparasites that negatively affect farmed chickens, leading to serious economic losses worldwide. Acaricides have been used to control PRMs in poultry houses. However, some PRMs have developed resistance to acaricides, and therefore different approaches are required to manage the problems caused by PRMs. Vaccination of chickens is one of the methods being considered to reduce the number of PRMs in poultry houses. In a previous study, a cysteine protease, Deg-CPR-1, was identified as a candidate vaccine against PRMs distributed in Europe. In this study, we investigated the characteristics of Deg-CPR-1. A phylogenetic analysis revealed that Deg-CPR-1 is closely related to the digestive cysteine proteases of other mite species, and it was classified into a cluster different from that of chicken cathepsins. Deg-CPR-1 of PRMs in Japan has an amino acid substitution compared with that of PRMs in Europe, but it showed efficacy as a vaccine, consistent with previous findings. Deg-CPR-1 exhibited cathepsin L-like enzyme activity. In addition, the Deg-CPR-1 mRNA was expressed in the midgut and in all stages of PRMs that feed on blood. These results imply that Deg-CPR-1 in the midgut may have important functions in physiological processes, and the inhibition of its expression may contribute to the efficacy of a Deg-CPR-1-based vaccine. Further research is required to fully understand the mechanisms of vaccine efficacy.
However, few reports have characterized MDV-1 strains isolated in Japan. In this study, we established the amino acid sequences of MDV-1 field isolates from Japan in order to determine whether they display a distinct diversity of and point mutations in Meq. In addition, we analyzed the transactivation activities of the Meq proteins in order to evaluate whether the observed mutations affect their functions. Japanese MDV-1 isolates displayed the distinct mutations in basic region 2 (BR2) and proline-rich repeats (PRRs) of the Meq proteins as well as some unique mutations. Reporter assays revealed that the amino acid substitutions in BR2 and the PRRs affected the Meq transactivation activity. These results suggest that the distinct mutations are also present in the Meq proteins of MDV-1 isolates from Japan and affect their transactivation activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.