In order to investigate the re-epithelialization process during wound healing, the hair on the back of guinea pigs was shaved and then excisional wounds were made through the entire thickness of the skin. Histological changes were observed and changes in the expression of different cytokeratin polypeptides were examined using an immunohistochemical technique. Immunohistochemical study revealed that the proliferating and migrating keratinocytes expressed the same cytokeratins as the basal cells of normal epidermis. In addition, the entire epidermis of fairly remote areas from the edges of the wound where no thickening was observed showed a temporarily abnormal staining pattern. The suprabasal cells in the regenerating epidermis temporarily expressed cytokeratins not only specific for suprabasal cells but also specific for basal cells. The cytokeratins expressed in normal basal keratinocytes were also present in the thickened granular layers. These data indicate that the expression of cytokeratins in the epidermal keratinocytes (even in fairly remote areas from the wound edges) changes during wound healing, that the origin of the migrating keratinocytes from the remaining epidermis seems to be the basal cells in the epidermis, and that the appearance of keratohyalin granules is not related to changes in cytokeratin expression.
Mutants of Pseudomonas aeruginosa, defective in the production of active R-type pyocins, were isolated from pyocinogenic strains and their products were characterized. Polysheath-like structures were found in induced lysates of 29 out of 42 mutants. Two mutants (strain P15-16 and M189) were found to produce special defective particles, which were characterized in detail. The other 11 mutants did not produce significant amounts of any structure visible under an electron microscope. Serum blocking powers were found in lysates from P15-16 and M189 to significant amounts. Defective particle produced by strain P15-16 lacked the sheath component, whereas M189 had morphological defects at the junction between sheath and baseplate, and also in the architecture of baseplate. Both defective particles could adsorb to the surface of bacteria, that were sensitive to pyocin, at the tip of their fibers without killing cells. All M189 particles attached to the bacteria had the extended sheaths. Therefore, attachment to the bacteria by fibers is not sufficient to kill cells, and contraction of sheath must occur after the initial adsorption by fibers for pyocin to express its biological activity. Defective particles of strain P15-16, which was derived from strain P15 (a pyocin Rl producer), could be converted to active forms by an in vitro complementation reaction with extracts from certain mutants originated from strain PAO (a pyocin R2 producer). This result indicated the exchangeability of components between R-type pyocins belonging to the different groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.