Waardenburg syndrome (WS) is a hereditary disorder that causes hypopigmentation and hearing impairment. Depending on additional symptoms, WS is classified into four types: WS1, WS2, WS3 and WS4. Mutations in MITF (microphthalmia-associated transcription factor) and PAX3, encoding transcription factors, are responsible for WS2 and WS1/WS3, respectively. We have previously shown that MITF transactivates the gene for tyrosinase, a key enzyme for melanogenesis, and is critically involved in melanocyte differentiation. Absence of melanocytes affects pigmentation in the skin, hair and eyes, and hearing function in the cochlea. Therefore, hypopigmentation and hearing loss in WS2 are likely to be the results of an anomaly of melanocyte differentiation caused by MITF mutations. However, the molecular mechanism by which PAX3 mutations cause the auditory-pigmentary symptoms in WS1/WS3 remains to be explained. Here we show that PAX3, a transcription factor with a paired domain and a homeodomain, transactivates the MITF promoter. We further show that PAX3 proteins associated with WS1 in either the paired domain or the homeodomain fail to recognize and transactivate the MITF promoter. These results provide evidence that PAX3 directly regulates MITF and suggest that the failure of this regulation due to PAX3 mutations causes the auditory-pigmentary symptoms in at least some individuals with WS1.
MITF (microphthalmia-associated transcription factor) encodes a transcription factor with a basic-helix-loop-helix-zipper (bHLH-Zip) motif. MITF mutations occur in patients with Waardenburg syndrome type 2, a disorder associated with melanocyte abnormalities. Here we show that ectopic expression of MITF converts NIH/3T3 fibroblasts into cells with characteristics of melanocytes. MITF transfectants formed foci of morphologically altered cells, which resemble those induced by oncogenes, but did not exhibit malignant phenotypes. Instead, they contained dendritic cells that express melanogenic marker proteins such as tyrosinase and tyrosinase-related protein 1. Most cloned cells of MITF transfectants exhibited dendritic morphology and expressed melanogenic markers, but such properties were not observed in cells transfected with closely related TFE3 cDNA. Our findings indicate that MITF is critically involved in melanocyte differentiation.
Transfection of NIH3T3 cells with an osteosarcoma expression cDNA library led to the appearance of foci of morphologically transformed cells which were found to harbor a novel oncogene, ost. The ost product was activated by truncation of the N‐terminal domain of the ost proto‐oncogene and was highly tumorigenic in nude mouse assays. The proto‐ost cDNA, isolated subsequently, encodes a predicted protein of 100 kDa containing DH (Db1 homology) and PH (pleckstrin homology) domains. Ost is mainly phosphorylated on serine and localized in the cytoplasm. Purified Ost protein catalyzed guanine nucleotide exchange on RhoA and Cdc42 among the Rho and Ras family members tested, indicating that Ost can activate these small GTP‐binding proteins. Ost did not detectably associate with RhoA or Cdc42, but interacted specifically with the GTP‐bound form of Rac1, suggesting that Ost can function as an effector of Rac1. These results suggest that Ost is a critical regulatory component which links pathways that signal through Rac1, RhoA and Cdc42. Of the tissues examined, expression of ost was the highest in brain and could be localized to neurons and alpha‐tanycytes, suggesting that Ost may participate in axonal transport in these specialized cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.