Abstractc‐Axis oriented aluminum nitride (AlN) thin films are successfully prepared on amorphous polyimide films by radiofrequency magnetron reactive sputtering at room temperature. Structural analysis shows that the AlN films have a wurtzite structure and consist of c‐axis oriented columnar grains about 100 nm wide. The full width at half maximum of the X‐ray diffraction rocking curves and piezoelectric coefficient d33 of the AlN films are 8.3° and 0.56 pC N–1, respectively. The AlN films exhibit a piezoelectric response over a wide temperature range, from –196 to 300 °C, and can measure pressure within a wide range, from pulse waves of hundreds of pascals to 40 MPa. Moreover, the sensitivity of the AlN films increases with the number of times it was folded, suggesting that we can control the sensitivity of the AlN films by changing the geometric form. These results were achieved by a combination of preparing the oriented AlN thin films on polyimide films, and sandwiching the AlN and polymer films between top and bottom electrodes, such as Pt/AlN/polyimide/Pt. They are thin (less than 10 μm), self powered, adaptable to complex contours, and available in a variety of configurations. Although AlN is a piezoelectric ceramic, the AlN films are flexible and excellent in mechanical shock resistance.
SUMMARYIn this paper, we define a new adaptive morphological operation, in which the value of a structuring element varies adaptively depending on the local intensity information of the processing image of interest. We prove that the proposed adaptive morphological operation has almost the same mathematical structure and properties as the conventional ones have. There are many useful functions in the method. Among them are the opening and closing, which implement both smoothing of the image and emphasizing of the edges at a time. Conventional opening operation has a smoothing function but not both. Applying our method to relatively unclear images such as ultrasound ones with speckle noise, its usefulness can be found in extracting regions. We also discuss parameter setting, and its enhancement effect together with experimental results is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.