Thermoelectric properties of polycrystalline degenerate n-type PbTe films have been investigated in order to understand potential barrier scattering. The Seebeck coefficients of the PbTe films obtained in this study were larger than those of bulk samples having the same carrier concentrations in the temperature range from 100 to 450 K. Some of their power factors were larger than those of bulk samples having the same carrier concentrations in the temperature range from 200 to 450 K, while their electrical conductivities were smaller than those of bulk samples. From a comparison of these results with those previously reported, we concluded that potential barrier scattering occurred at grain boundaries in our films, resulting in the above favorable changes in thermoelectric properties. By analyzing their properties using the energy filtering model, we estimated the height of grain-boundary potential barriers, which probably influenced the increases in the Seebeck coefficient. We also examined the origin of the potential barriers accordingly. Consequently, we consider that the origin of the potential barriers was mainly due to point defects, probably Te vacancies, and that the barrier height may be controlled, for example, by the preparation conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.