The cancer stem cell (CSC) theory highlights a self-renewing subpopulation of cancer cells that fuels tumour growth. The existence of human CSCs is mainly supported by xenotransplantation of prospectively isolated cells, but their clonal dynamics and plasticity remain unclear. Here, we show that human LGR5 colorectal cancer cells serve as CSCs in growing cancer tissues. Lineage-tracing experiments with a tamoxifen-inducible Cre knock-in allele of LGR5 reveal the self-renewal and differentiation capacity of LGR5 tumour cells. Selective ablation of LGR5 CSCs in LGR5-iCaspase9 knock-in organoids leads to tumour regression, followed by tumour regrowth driven by re-emerging LGR5 CSCs. KRT20 knock-in reporter marks differentiated cancer cells that constantly diminish in tumour tissues, while reverting to LGR5 CSCs and contributing to tumour regrowth after LGR5 CSC ablation. We also show that combined chemotherapy potentiates targeting of LGR5 CSCs. These data provide insights into the plasticity of CSCs and their potential as a therapeutic target in human colorectal cancer.
Gene modification in untransformed human intestinal cells is an attractive approach for studying gene function in intestinal diseases. However, because of the lack of practical tools, such studies have largely depended upon surrogates, such as gene-engineered mice or immortalized human cell lines. By taking advantage of the recently developed intestinal organoid culture method, we developed a methodology for modulating genes of interest in untransformed human colonic organoids via electroporation of gene vectors. Here we describe a detailed protocol for the generation of intestinal organoids by culture with essential growth factors in a basement membrane matrix. We also describe how to stably integrate genes via the piggyBac transposon, as well as precise genome editing using the CRISPR-Cas9 system. Beginning with crypt isolation from a human colon sample, genetically modified organoids can be obtained in 3 weeks.
Recent sequencing analyses have shed light on heterogeneous patterns of genomic aberrations in human gastric cancers (GCs). To explore how individual genetic events translate into cancer phenotypes, we established a biological library consisting of genetically engineered gastric organoids carrying various GC mutations and 37 patient-derived organoid lines, including rare genomically stable GCs. Phenotype analyses of GC organoids revealed divergent genetic and epigenetic routes to gain Wnt and R-spondin niche independency. An unbiased phenotype-based genetic screening identified a significant association between CDH1/TP53 compound mutations and the R-spondin independency that was functionally validated by CRISPR-based knockout. Xenografting of GC organoids further established the feasibility of Wnt-targeting therapy for Wnt-dependent GCs. Our results collectively demonstrate that multifaceted genetic abnormalities render human GCs independent of the stem cell niche and highlight the validity of the genotype-phenotype screening strategy in gaining deeper understanding of human cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.