The polycomb repressor complex 2 molecule EZH2 is now known to play a role in essential cellular processes, namely, cell fate decisions, cell cycle regulation, senescence, cell differentiation, and cancer development/progression. EZH2 inhibitors have recently been developed; however, their effectiveness and underlying molecular mechanisms in many malignancies have not yet been elucidated in detail. Although the functional role of EZH2 in tumorigenesis in neuroblastoma (NB) has been investigated, mutations of EZH2 have not been reported. A Kaplan–Meier analysis on the event free survival and overall survival of NB patients indicated that the high expression of EZH2 correlated with an unfavorable prognosis. In order to elucidate the functional roles of EZH2 in NB tumorigenesis and its aggressiveness, we knocked down EZH2 in NB cell lines using lentivirus systems. The knockdown of EZH2 significantly induced NB cell differentiation, e.g., neurite extension, and the neuronal differentiation markers, NF68 and GAP43. EZH2 inhibitors also induced NB cell differentiation. We performed a comprehensive transcriptome analysis using Human Gene Expression Microarrays and found that NTRK1 (TrkA) is one of the EZH2-related suppression targets. The depletion of NTRK1 canceled EZH2 knockdown-induced NB cell differentiation. Our integrative methylome, transcriptome, and chromatin immunoprecipitation assays using NB cell lines and clinical samples clarified that the NTRK1 P1 and P2 promoter regions were regulated differently by DNA methylation and EZH2-related histone modifications. The NTRK1 transcript variants 1/2, which were regulated by EZH2-related H3K27me3 modifications at the P1 promoter region, were strongly expressed in favorable, but not unfavorable NB. The depletion and inhibition of EZH2 successfully induced NTRK1 transcripts and functional proteins. Collectively, these results indicate that EZH2 plays important roles in preventing the differentiation of NB cells and also that EZH2-related NTRK1 transcriptional regulation may be the key pathway for NB cell differentiation.
IGF2, a maternally imprinted foetal growth factor gene, is implicated in many childhood tumours including hepatoblastoma (HB); however, the genetic and epigenetic alterations have not comprehensively been studied. We analysed the methylation status of the H19 differentially methylated region (DMR), loss of heterozygosity (LOH) and allelic expression of IGF2 in 54 HB tumours, and found that 12 tumours (22%) with LOH, 9 (17%) with loss of imprinting (LOI) and 33 (61%) with retention of imprinting (ROI). Biallelic and monoallelic IGF2 expressions correlated with hypermethylation and normal methylation of H19 DMR, respectively, in two tumours with LOI and seven tumours with ROI. Quantitative RT -PCR analysis showed minimal expression of H19 mRNA and substantial expression of IGF2 mRNA in tumours with LOH or LOI, and substantial expression of both H19 and IGF2 mRNAs in tumours with ROI. Increased IGF2 expression with predominant embryonic P3 transcript was found in the majority of HBs with ROI and foetal livers. In contrast to the earlier reports, our findings suggest that the disruption of the enhancer competition model reported in Wilms' tumour may also occur in HB. Both frequencies of LOH and LOI seem to be lower in HB than in Wilms' tumour, reflecting the different tissue origins.
Despite the progress of therapy, outcomes of advanced hepatoblastoma patients who are refractory to standard preoperative chemotherapy remain unsatisfactory. To improve the mortality rate, novel prognostic markers are needed for better therapy planning. We examined the methylation status of 13 candidate tumor suppressor genes in 20 hepatoblastoma tumors by conventional methylation-specific PCR (MSP) and found hypermethylation in 3 of the 13 genes. We analyzed the methylation status of these 3 genes (RASSF1A, SOCS1 and CASP8) in 97 tumors and found hypermethylation in 30.9, 33.0 and 15.5%, respectively. Univariate analysis showed that only the methylation status of RASSF1A but not the other 2 genes predicted the outcome, and multivariate analysis showed a weak contribution of RASSF1A methylation to overall survival. Using quantitative MSP, we found RASSF1A methylation in 44.3% of the 97 tumors. CTNNB1 mutation was detected in 67.0% of the 97 tumors. While univariate analysis demonstrated RASSF1A methylation, CTNNB1 mutation and other clinicopathological variables as prognostic factors, multivariate analysis identified RASSF1A methylation (p 5 0.043; relative risk 9.39) and the disease stage (p 5 0.002; relative risk 7.67) but not CTNNB1 mutation as independent prognostic factors. In survival analysis of 33 patients in stage 3B or 4, patients with unmethylated tumor had better overall survival than those with methylated tumor (p 5 0.035). RASSF1A methylation may be a promising moleculargenetic marker to predict the treatment outcome and may be used to stratify patients when clinical trials are carried out. ' 2008 Wiley-Liss, Inc.Key words: RASSF1A; CTNNB1; quantitative MSP; hepatoblastoma; prognostic factor Hepatoblastoma is a rare malignant neoplasm of the liver, with an incidence of 0.5-1.5 per million children. 1 Remarkable progress in clinical outcome has been achieved in the past 20 years due to advances in chemotherapy and surgical procedures; however, the mortality rate remains 20-30% and treatment results in patients in advanced stages who are refractory to standard preoperative chemotherapy regimens are unsatisfactory. 2,3 To improve the mortality of these patients, innovative treatment and potent prognostic markers for better therapy planning are needed. The present clinical factors predicting outcome include the level of alpha-feto protein, histology, disease stage and growth pattern of the tumor. 2-4 Chromosomal gains of 2q, 8q and 20 and high expression of telomerase or PLK1 were shown to be moleculargenetic markers predicting poor outcome 5-8 ; however, none have been proven to be independent prognostic factors by multivariate analysis.We previously reported that RASSF1A (RAS association domain family protein 1) methylation, found in 39% of 39 hepatoblastoma tumors, was correlated with poor outcome by univariate analysis. 9 Nevertheless, the article had some limitations that the number of tumors was not enough, the method used to detect the hypermethylation was suboptimal, and the prognostic signifi...
The WT1 gene essential for the embryonic kidney development is mutated in 15-25% of Wilms tumors (WTs). To clarify whether genetic subtypes of WT1 abnormalities are correlated with IGF2 or CTNNB1 alterations or clinicopathological characteristics, we performed comprehensive WT1, IGF2, and CTNNB1 analyses of 36 WTs with WT1 abnormalities using single nucleotide polymorphism arrays, and methylation analysis of the IGF2-H19 differentially methylated region. The tumors were classified into three subtypes based on WT1 abnormalities: 13 with WT1 deletion, 12 with WT1 mutation, and 11 with both deletion and mutation. IGF2 alterations were found in 50% (18/36), paternal uniparental disomy (UPD) of 11p13-11p15 in 13 tumors, UPD limited to 11p15 in 3, and loss of IGF2 imprinting in 2. Quantitative RT-PCR analysis showed that tumors with IGF2 alteration had higher levels of IGF2 mRNA than tumors without IGF2 alteration (P = 0.02). WT1 mRNA levels were very low in six of eight WTs with WT1 deletion, whereas four of eight WTs with WT1 mutation or both deletion and mutation showed higher levels of WT1 mRNA than fetal kidneys. WTs with WT1 mutations occurred in younger patients (P < 0.01), and WTs with mutations or both deletion and mutation (12/23) were more frequent in syndromic patients than WTs (1/13) with the deletion (P = 0.02). WTs with WT1 mutations or both deletion and mutation had the triphasic histological-type (15/23; P = 0.03) and CTNNB1 mutation (17/23; P = 0.03) more frequently than WTs with the deletion (2/13 and 4/13). Thus, three WT1 subtypes were correlated with certain genetic and clinicopathological characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.