Surface wettability is an important physicochemical property of biomaterials, and it would be more helpful for understanding this property if a wide range of wettability are employed. This study focused on the effect of surface wettability on fibroblast adhesion over a wide range of wettability using a single material without changing surface topography. Plasma polymerization with hexa methyldisiloxane followed by oxygen (O 2 ) plasma treatment was employed to modify the surfaces. The water contact angle of sample surfaces varied from 106 degrees (hydrophobicity) to almost 0 degrees (super-hydrophilicity). O 2 -functional groups were introduced on polymer surfaces during O 2 -plasma treatment. The cell attachment study confirmed that the more hydrophilic the surface, the more fibroblasts adhered in the initial stage that includes on super-hydrophilic surfaces. Cells spread much more widely on the hydrophilic surfaces than on the hydrophobic surfaces. There was no significant difference in fibroblast proliferation, but cell spreading was much greater on the hydrophilic surfaces. These findings suggest the importance of the surface wettability of biomaterials on initial cell attachment and spreading. The degree of wettability should be taken into account when a new biomaterial is to be employed. Further research of surface wettability on adhesive molecules is necessary for a better understanding of this property.
SYNOPSISMonodisperse poly ( divinylbenzene) and poly ( styrene-co-divinylbenzene) particles were prepared in the 0.4-3 pm size range by dispersion polymerization in methanol and methanol/ co-solvent mixtures. The effects of polymerization parameters, such as the crosslinking monomer concentration, the co-solvent, and the presence of oxygen were studied. For good colloidal stability, it was necessary to use a relatively large fraction of crosslinking monomer. The initial presence of oxygen was also found to play an important role in determining the colloidal stability during the polymerization. Although the exact mechanism is not certain, it is considered likely that the oxygen promotes the grafting of poly (divinylbenzene) to the polyvinylpyrrolidone (PVP) stabilizer molecules. The growing particles were investigated by electron microscopy. Precipitation of small particles onto the nucleated particles was determined to be the primary mechanism of particle growth.
We have developed a new error correction method (Picket: a combination of a long distance code (LDC) and a burst indicator subcode (BIS)), a new channel modulation scheme (17PP, or (1, 7) RLL parity preserve (PP)-prohibit repeated minimum transition runlength (RMTR) in full), and a new address format (zoned constant angular velocity (ZCAV) with headers and wobble, and practically constant linear density) for a digital video recording system (DVR) using a phase change disc with 9.2 GB capacity with the use of a red (λ=650 nm) laser and an objective lens with a numerical aperture (NA) of 0.85 in combination with a thin cover layer. Despite its high density, this new format is highly reliable and efficient. When extended for use with blue-violet (λ≈405 nm) diode lasers, the format is well suited to be the basis of a third-generation optical recording system with over 22 GB capacity on a single layer of a 12-cm-diameter disc.
The mechanical properties of Ti-6Al-4V-XCu (1, 4 and 10 wt% Cu) alloys were examined. The castings for each alloy were made in a centrifugal titanium casting machine. Two shapes of specimens were used: a dumbbell (20 mm gauge length x 2.8 mm diameter) for mechanical property studies, and a flat slab (2 mm x 10 mm x 10 mm) for metallography, microhardness determination and X-ray diffractometry. Tensile strength, yield strength, modulus of elasticity, elongation and microhardness were evaluated. After tensile testing, the fracture surfaces were observed using scanning electron microscopy. The tensile strengths of the quaternary alloys decreased from 1016 MPa for the 1% Cu alloy to 387 MPa for the 10% Cu alloy. Elongation decreased with an increase in the copper content. The 1% Cu alloy exhibited elongation similar to Ti-6Al-4V without copper (3.0%). The results also indicated that the copper additions increased the bulk hardness of the quaternary alloy. In particular, the 10% Cu alloy had the highest hardness and underwent the most brittle fracture. The mechanical properties of cast Ti-6Al-4V alloy with 1 and 4% Cu were well within the values for existing dental casting non-precious alloys.
Subaru adaptive optics system (AO188) is an 188-elements curvature sensor adaptive optics system that is operated in both natural and laser guide star modes. AO188 was installed at Nasmyth platform of the Subaru telescope and it has been successfully operating in the natural guide star mode since October 2008. The performance of AO188 in the natural guide star mode has been well verified from on-sky data obtained with the infrared camera and spectrograph (IRCS). Under normal seeing condition, AO188 achieves K-band Strehl ratio between 60% and 70% using R = 9.0 magnitude natural guide stars and it works well with faint guide stars down to R = 16.5 magnitude. We measured the FWHM and Strehl ratio of stellar images in globular clusters and found that the isoplanatic angle is approximately 30 arcsec. In this paper, we describe an overview of the operation procedure for AO188, as well as its performance such as angular resolution, Strehl ration, and sensitivity gain for detecting faint objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.