Molecular mechanisms regulating animal seasonal breeding in response to changing photoperiod are not well understood. Rapid induction of gene expression of thyroid-hormone-activating enzyme (type 2 deiodinase, DIO2) in the mediobasal hypothalamus (MBH) of the Japanese quail (Coturnix japonica) is the earliest event yet recorded in the photoperiodic signal transduction pathway. Here we show cascades of gene expression in the quail MBH associated with the initiation of photoinduced secretion of luteinizing hormone. We identified two waves of gene expression. The first was initiated about 14 h after dawn of the first long day and included increased thyrotrophin (TSH) beta-subunit expression in the pars tuberalis; the second occurred approximately 4 h later and included increased expression of DIO2. Intracerebroventricular (ICV) administration of TSH to short-day quail stimulated gonadal growth and expression of DIO2 which was shown to be mediated through a TSH receptor-cyclic AMP (cAMP) signalling pathway. Increased TSH in the pars tuberalis therefore seems to trigger long-day photoinduced seasonal breeding.
Reproduction of many temperate zone birds is under photoperiodic control. The Japanese quail is an excellent model for studying the mechanism of photoperiodic time measurement because of its distinct and marked response to changing photoperiods. Studies on this animal have suggested that the mediobasal hypothalamus (MBH) is an important centre controlling photoperiodic time measurement. Here we report that expression in the MBH of the gene encoding type 2 iodothyronine deiodinase (Dio2), which catalyses the intracellular deiodination of thyroxine (T4) prohormone to the active 3,5,3'-triiodothyronine (T3), is induced by light in Japanese quail. Intracerebroventricular administration of T3 mimics the photoperiodic response, whereas the Dio2 inhibitor iopanoic acid prevents gonadal growth. These findings demonstrate that light-induced Dio2 expression in the MBH may be involved in the photoperiodic response of gonads in Japanese quail.
Detection of internal body time (BT) via a few-time-point assay has been a longstanding challenge in medicine, because BT information can be exploited to maximize potency and minimize toxicity during drug administration and thus will enable highly optimized medication. To address this challenge, we previously developed the concept, ''molecular-timetable method,'' which was originally inspired by Linné 's flower clock. In Linné 's flower clock, one can estimate the time of the day by watching the opening and closing pattern of various flowers. Similarly, in the molecular-timetable method, one can measure the BT of the day by profiling the up and down patterns of substances in the molecular timetable. To make this method clinically feasible, we now performed blood metabolome analysis and here report the successful quantification of hundreds of clock-controlled metabolites in mouse plasma. Based on circadian blood metabolomics, we can detect individual BT under various conditions, demonstrating its robustness against genetic background, sex, age, and feeding differences. The power of this method is also demonstrated by the sensitive and accurate detection of circadian rhythm disorder in jet-lagged mice. These results suggest the potential for metabolomics-based detection of BT (''metabolite-timetable method''), which will lead to the realization of chronotherapy and personalized medicine.chronotherapy ͉ circadian ͉ metabolome ͉ jet-lag ͉ LC-MS
We recently identified a cDNA encoding three novel fish hypothalamic neuropeptides, having LPXRF-NH 2 from the goldfish brain. In this study, to clarify the physiological functions of these three LPXRFamide peptides (gfLPXRFa-1, -2, and -3), we analysed the localisation and hypophysiotrophic activity of these peptides using sockeye salmon, Oncorhynchus nerka, in which immunoassay systems for several anterior pituitary hormones have been developed. gfLPXRFa-immunoreactive cell bodies were detected in the nucleus posterioris periventricularis of the hypothalamus and immunoreactive fibres were distributed in various brain regions and the pituitary.We also detected gfLPXRFa-immunoreactivity in the pituitary by competitive enzyme-linked immunosorbent assay combined with reversed-phase HPLC. These three gfLPXRFamide peptides stimulated the release of FSH, LH and GH, but did not affect the release of prolactin (PRL) and somatolactin (SL) from cultured pituitary cells. These results suggest that novel fish hypothalamic LPXRFamide peptides exist in the brain and pituitary of sockeye salmon and stimulate the release of gonadotrophins and GH from the pituitary.
The pars tuberalis of the pituitary gland is the regulatory hub for seasonal reproduction in birds and mammals. Although fish also exhibit robust seasonal responses, they do not possess an anatomically distinct pars tuberalis. Here we report that the saccus vasculosus of fish is a seasonal sensor. We observe expression of key genes regulating seasonal reproduction and rhodopsin family genes in the saccus vasculosus of masu salmon. Immunohistochemical studies demonstrate that all of these genes are expressed in the coronet cells of the saccus vasculosus, suggesting the existence of a photoperiodic signalling pathway from light input to neuroendocrine output. In addition, isolated saccus vasculosus has the capacity to respond to photoperiodic signals, and its removal abolishes photoperiodic response of the gonad. Although the physiological role of the saccus vasculosus has been a mystery for several centuries, our findings indicate that the saccus vasculosus acts as a sensor of seasonal changes in day length in fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.