We report the detection and polarization of nuclear spins in diamond at room temperature by using a single nitrogen-vacancy (NV) center. We use Hartmann-Hahn double resonance to coherently enhance the signal from a single nuclear spin while decoupling from the noisy spin bath, which otherwise limits the detection sensitivity. As a proof of principle, we (i) observe coherent oscillations between the NV center and a weakly coupled nuclear spin and (ii) demonstrate nuclear-bath cooling, which prolongs the coherence time of the NV sensor by more than a factor of 5. Our results provide a route to nanometer scale magnetic resonance imaging and novel quantum information processing protocols.
Lightly phosphorus-doped {111} homoepitaxial diamond films have been grown by microwave plasma-assisted chemical vapor deposition under optimized growth conditions. The Phosphorus concentration in the film can be controlled at a low doping level of the order of 1016cm−3. N-type conductivity of the films with phosphorus concentrations above 1×1016cm−3 is reproducibly confirmed by Hall-effect measurements in the temperature range from 300to873K. The highest value of the Hall mobility at room temperature is 660cm2∕Vs obtained for a film with a phosphorus concentration of 7×1016cm−3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.