An innovative PWR concept that uses carbon-coated particle fuels moderated by graphite as that of HTGR but cooled by pressurized light water has been studied. The aim of this concept is to take both the best advantages of fuel integrity against fission products release and the reliability of PWR technology based on the long operational experience.The purpose of the study is to optimize loading pattern of burnable poison in the proposed core in order to suppress excess reactivity during a cycle. Although there are many parameters to be determined for optimization of the usage of burnable poison, the emphasis is put here on loading patterns of Gadolinia in an assembly and in the core. We investigated the burnup characteristics of the core varying the concentration of burnable poison in a fuel rod, the number of burnable poison-rods in an assembly, and the number of burnable poison-assemblies in the core. The result suggested that Gadolinia was more suitable for this reactor than boron as burnable poison, and it was possible to make the reactivity swing negligible by combining at least three kinds of burnable poison-assemblies in which the amount of Gadolinia was different. Therefore the requirement for the number of control rods was reduced and it meant that Control Rod Programming would become easier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.