UV disinfection has been applied to water treatment in recent years with low-pressure and medium-pressure UV lamps mainly used as the light source. In general, UV disinfection is considered to be inefficient with water of high turbidity because of inhibition of light penetration. Additionally, photoreactivation may be a problem that should be considered in case a disinfected water is discharged to the environment where sunlight causes reactivation. Recently, other types of lamps have been proposed including a flush-type lamp (such as a pulsed-xenon lamp) that emits high energy and wide wavelength intermittently. In this study, the difference between inactivation efficiencies by low-pressure UV (LPUV) and pulsed-xenon (PXe) lamps was investigated using two coliphage types and three strains of Escherichia coli. PXe had a suppressive effect on photoreactivation rate of the E. coli strains even though there was no significant effect on inactivation rate and maximum survival ratio after photoreactivation. PXe also had a benefit when applied to high turbidity waters as no tailing phenomena were observed in the low survival ratio area although it was observed in LPUV inactivation. This efficiency difference was considered to be due to the difference in irradiated wavelength of both lamps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.